PyCav Documentation Release 1.0.0b3+20.g707483f.dirty

PyCav team

August 30, 2016

2 PyCav API Documentation 5
3 About PyCav 55

PyCav offers a rich set of tools so that you can make and visualize effective Physical simulations quickly. Its main components are:

- A mechanics module which can currently do the following:
- Collision detection between spherical particles
- Connect particles with a spring
- Simulate forces from a field
- A quantum module for time independent 1D quantum systems
- A PDE module for 1D and 2D systems
- An optics module for performing refraction in the geometic optics limit
- A display module for displaying matplotlib animations within Jupyter notebooks
- Optional visualization using vpython

This documentation will walk through how to setup PyCav, as well as how to use it.
The table of contents is in the left sidebar, and developement can be followed at PyCav module repository.
The changelog is also at the PyCav module repository.

PyCav Documentation, Release 1.0.0b3+20.g707483f.dirty

Installing PyCav

PyCav requires Python 2.7 or 3.5 .
There are a few ways to install PyCav. * The simplest and recommended way is to run the following command in Command Prompt (Windows) or Terminal(Mac/Linux), with pip installed:

```
    $ pip install pycav
This way, PyCav and all of its dependencies will be installed.
If you want to visualize the simulations, vpython also needs to be installed with
```

\$ pip install vpython

- If you don't want to use the previous command, you can get the latest release as a tarball from from PyPI. With this method, however, you will not get the dependencies automatically installed, so make sure that you have: * numpy * matplotlib * scipy * vpython (If you want to visualize simulations) installed when you want to use PyCav.

PyCav API Documentation

PyCav currently contains these modules. Click on their names to read their API documentation.

2.1 Mechanics

2.1.1 Introduction to the mechanics module

The mechanics module provides the infrastructure to create simple systems consisting of springs and particles, and handles collisions between them as well as the visualization. A quick example of their use:

```
from pycav.mechanics import *
from vpython import *
container = Container(dimension=1)
system = System(collides=True, interacts=False, visualize=True, container=container)
avg_speed = 1
system.create_particles_in_container(number=100, speed=avg_speed, radius=0.03)
system.run_for(10)
```

This creates a system consisting of a 100 particles which can collide with each other within a cubic container of unit size, which is then run for 10 seconds in the system's time.
You can find the source code for the Mechanics module on the GitHub.

2.1.2 Classes

Particle

Particle is a class that represents a particle. It is not tied to any visualization method by design. By default, it implements a gravitational field, which can be changed by subclassing.

Functions

__init_(pos=None, v=None, radius=1., inv_mass=0., color=None, alpha=1., fixed=False, applied_force=no_force, $\mathbf{q}=\mathbf{0}$., make_trail = False)

Initialises the Particle object.
Parameters:
pos: numpy array
Initial position of particle, default $0,0,0$
v: numpy array
Initial velocity of particle, default $0,0,0$
radius: float
Radius of particle
inv_mass: float
Inverse mass of particle
color: array
Color of particle, given in form [R G B], default $1,0,0$
alpha: float
Alpha of particle, 1 is completely opaque, 0 is completely transparent, used in visualisation
fixed: boolean
Whether particle can move or not
applied_force: function taking arguments of: particle(Particle) and time(float), that returns a numpy array

Gives the applied force based on the particle's properties and time. By default, no force applied on particle.
q : float
Charge on particle
make_trail: boolean
Whether the particle will make a trail or not

update(dt)

Updates the position of the particle using the velocity Verlet method.

Parameters:

$d t$: float
Size of time step to take

force_on(other, if_at=None)

Gives force which another particle will feel from this particle (if at means that this can also give the force that the other particle would feel if it were at some other position). Default implementation gives gravitational force. Subclass particle and override this function to implement custom forces.

Parameters:

other: Particle
The particle which feels the force
if_at: numpy array
If this parameter is used, the function gives the force the 'other' particle would feel if it were at this position

Returns:

A numpy array with 3 elements giving the vector force on the other particle from this particle.

Properties

pos
numpy array
3 element array giving position of particle in 3D space.
v
numpy array
3 element array giving the velocity of the particle.
fixed
boolean
If True, particle will be fixed and not move around however much force is applied to it. If False, particle will move due to interactions.
q
float
Charge on particle.
color
array
Gives the color of the particle as an array, given in the form [R G B]. Each element of the array should be between 0 and 1 .
radius
float
Gives the radius of the particle.
alpha
float
Float between 0 and 1, giving the opacity of the particle.
make_trail
boolean
Decides whether the particle will make a trail or not when visualized.
amplitude
float, read only
Gives the amplitude of oscillations. Depends on the system class the particle is in to update.
prev_pos
numpy array, read only
3 element array giving the previous position of the particle.

Spring

The Spring class represents a spring. It is not tied to any visualization method by design. It connects two Particles together and applies a force $\mathrm{F}=\mathrm{kx}$ to them, as per Hooke's Law. It also shares many visualization properties with the Particle class.

Functions

init(particle_1, particle_2, $k, 10=$ None, radius= $\mathbf{0 . 5}$, color=None, alpha=1.)
Initialises the Spring object by supplying the 2 particles it connects and the value of the stiffness, k .

Parameters:

particle_1: Particle
Particle on one end of spring
particle_2: Particle
Particle on other end of spring
k: float
The stiffness of the spring ($\mathrm{F}=\mathrm{kx}$)
l0: float
Original length of the spring
radius: float
Radius of spring.
color: array
Color of particle, given in form [R G B]
alpha: float
Alpha of particle, 1 is completely opaque, 0 is completely transparent, used in visualisation

force_on(particle, if_at=np.array([None]))

Given an arbitary particle, gives the force on that particle. No force if the spring isn't connected to that particle.

Parameters:

particle: Particle

Particle which feels the force
if_at: NumPy Array
If this parameter is used, this gives the force felt if the particle were at this position.

Returns:

A numpy array with 3 elements giving the vector force on the particle from the spring.

Properties

particle_1

Particle
First particle that the spring is attached to.

particle_2

Particle
Second particle that the spring is attached to.
k
float
The stiffness of the spring $(\mathrm{F}=\mathrm{kx})$

10

float

The original length of the spring.
color
array
Gives the color of the spring as an array, given in the form [R G B]. Each element of the array should be between 0 and 1 .
radius
float
Gives the radius of the spring.
alpha
float
Float between 0 and 1 , giving the opacity of the spring.

pos

numpy array, read only
3 element array giving position of one end of the spring in 3D space.
axis ^
numpy array, read only
3 element array the axis, i.e. the vector showing the orientation and length of the spring.

Container

Container is a class that represents a cubic Container that particles can be inside. It is not tied to any visualization method by design.

Functions

init(dimension, pos=None, color=None, alpha=0.3)
Initialises the Container object

Parameters:

dimension: float
The dimension of the Container, i.e. the length, width, height of the Container
pos: numpy array
Position of centre of cube, default $0,0,0$
color: array
Color of particle, given in form [R G B], default 1,1,1
alpha: float
Alpha of particle, 1 is completely opaque, 0 is completely transparent, used in visualisation

contains(particle)

Function which checks if a given particle is entirely inside the Container
Parameters:
particle: Particle
Particle which is being checked to see if inside Container or not

Returns:

True if the Container contains the particle, and if not, returns the index of the axis along which the particle is outside the Container

Properties

pos
numpy array
3 element array giving position of tail end of Container in 3D space.

dimension

float
The dimension of the Container, i.e. the length, width, height of the Container
axis
numpy array
3 element array the axis, i.e. the vector showing the orientation and length of the Container.
color
array
Gives the color of the Container as an array, given in the form [R G B]. Each element of the array should be between 0 and 1 .
alpha
float
Float between 0 and 1, giving the opacity of the Container.

surface_area

float
Float giving the surface area of the Container.

PointerArrow

PointerArrow is a class that represents an arrow/pointer. It is not tied to any visualization method by design.

Functions

__init__(pos, axis, shaftwidth=1, color=None, alpha=1)
Initialises the PointerArrow object

Parameters:

pos: numpy array
Location of tail end of PointerArrow
axis: numpy array
A 3 dimensional vector giving the length and orientation of the pointer
shaftwidth: float
The width of the pointer's shaft
color: array
Color of PointerArrow, given in form [R G B], default 1, 1, 1
alpha: float
Alpha of PointerArrow, 1 is completely opaque, 0 is completely transparent, used in visualisation

Properties

pos
numpy array
3 element array giving position of the centre of the PointerArrow in 3D space.
color
array
Gives the color of the PointerArrow as an array, given in the form [R G B]. Each element of the array should be between 0 and 1 .

shaftwidth

float
Gives the shaft width of the PointerArrow.
alpha
float
Float between 0 and 1 , giving the opacity of the PointerArrow.

System

System is a class used for the physical simulation of a collection of Particles, Springs, and Containers. It is also responsible for the visualization of such a collection. It does this by translating the properties of Particles, Springs, and Containers, to properties that vpython can use.

To simulate any new types of physical objects, subclass System and extend the simulate function. To make these new objects visualize in vpython, extend the create_vis and update_vis functions too.
To visualize the system using some different system than vpython, subclass System and override the create_vis and update_vis functions.

Functions

_init__(collides, interacts, visualize, particles=None, springs=None, container=None, visualizer_type="vpython", canvas=None, stop_on_cycle=False, record_amplitudes=False, display_forces=False, record_pressure=False)

Initialises a System class

Parameters

collides: boolean
Whether particles in this system collide with each other or not
interacts: boolean
Whether particles in this system interact with each other via fields
visualize: boolean
Whether the things in this system are visualized
particles: array of Particles
An array of all the particles in this system
springs: array of springs
An array of all the springs in this system

container: Container

Container within which the simulation takes place
visualizer_type: string
What type of visualizer is used. Used to make sure that some vpython-specific non-essential things don't run if different visualization method is used in a subclass. Set to anything you like if using another visualization method
canvas: vpython cavas
The canvas within which the system is visualized. Can be any type of view if System is subclassed
stop_on_cycle: boolean
Whether the simulation stops runnign when a full cycle is done. Only tested on relatively simple 1D systems, and only works when using the function run_for instead of simulate
record_amplitudes: boolean
Whether the system records the amplitudes of any oscillations. Only tested with simple 1D systems
display_forces: boolean
Whether the forces applied on the particle are displayed. By default, these vectors are displaced from the particles by 2 *particle radius along the 2 -axis. To change, need to subclass and edit simulate method.
record_pressure: boolean
Whether to record the pressure on the walls of the container or not

create_vis(canvas=None)

Creates a visualization. Override this method to change the visualization method.

Parameters:

canvas: vpython canvas
The canvas into which the visualization is drawn. For this implementation, must be a vpython canvas
update_vis()
Updates the visualization. Override this method to change the visualization method.

run_for(time, $\mathbf{d t}=\mathbf{0 . 0 1}$, on_step=None)

Run simulation for a certain amount of time(as measured in the simulated system's time). Recommended to use this instead of simulate(dt) for most situations, unless need some mechanism to stop simulation on some external condition.

Parameters:

time: float
Time for which the simulation will run for in the system's time
dt: float
Size of each step taken in time

```
on_step: function taking one unnamed argument of System
```

This system is passed to the function, and the defined function will be performed at the end of every step

simulate(dt = 0.01)

Simulates a time-step with a step size of dt. Collision detection, etc. happen here, so when adding new classes to simulate, extend this to add logic to simulate them.

Parameters:

dt: float
Size of time step taken

create_particles_in_container(number=0, speed=0, radius=0, inv_mass=1.)

Creates the given number of particles, with the given parameters, in random locations within the container. If the system has no container, this method will raise a RuntimeError.

Parameters:

number: integer
The number of particles to create
speed: float
The speed of these particles
radius: float
The radius of these particles
inv_mass: float
The inverse mass of these particles

Properties

particles: array of Particles
An array of all the particles in this system
springs: array of springs
An array of all the springs in this system
container: Container
Container within which the simulation takes place
collides: boolean
Whether particles in this system collide with each other or not
interacts: boolean
Whether particles in this system interact with each other via fields
visualize: boolean
Whether the things in this system are visualized
visualizer_type: string
What type of visualizer is used. Used to make sure that some vpython-specific non-essential things don't run if different visualization method is used in a subclass. Set to anything you like if using another visualization method canvas: vpython cavas

The canvas within which the system is visualized. Can be any type of view if System is subclassed stop_on_cycle: boolean

Whether the simulation stops runnign when a full cycle is done. Only tested on relatively simple 1D systems, and only works when using the function run_for instead of simulate
record_amplitudes: boolean
Whether the system records the amplitudes of any oscillations. Only tested with simple 1D systems

display_forces: boolean

Whether the forces applied on the particle are displayed. By default, these vectors are displaced from the particles by $2 *$ particle radius along the 2 -axis. To change, need to subclass and edit simulate method.
record_pressure: boolean
Whether to record the pressure on the walls of the container or not
speeds: Array of floats, read only
3D speed distribution of system as an unsorted array
one_d_velocities: Array of floats, read only
1D velocity distribution of system as an unsorted array

2.1.3 Functions

```
no_force(pos, time)
```

This is used as the default force applied to Particles. Returns no force, as name suggests.

Parameters:

particle: Particle
Particle which will feel the force
time: float
Time at which this force is felt

Returns:

A numpy array 0., $0 ., 0$.
element_mult(vec_1, vec_2)

Performs element wise multiplication (computes the Hadamard product) between two 3 dimensional vectors.

Parameters:

vec_1: numpy array
A 3 element numpy array which represents the first vector for which elements are multiplied
vec_2: numpy array
A 3 element numpy array which represents the second vector for which elements are multiplied

Returns:

The Hadamard product of the two vectors given as a 3-element numpy array
vector_from(arr=np.array([0, 0, 0]))
Creates a vpython vector from a numpy array.
Parameters:
arr: numpy array
3 element numpy array which will be converted to into a vpython vector

Returns:

The numpy array converted into the equivalent vpython array

normalized(arr)

Creates a normalised 1-D array for the 1-D array given.

Parameters:

arr: numpy array
Array to be normalised
Returns:
A 1-D numpy array that is of unit length

2.2 Quantum

2.2.1 Introduction to the Quantum module

This module contains functions for use in 1st order perturbation theory calculations and for solving 1d boundary value problems using the Shooting method. It also contains a class designed to represent systems of interacting spins. Documentation explaining the use of each function and the algorithms used within will be presented in individual sections.

You can find the source code for this module on the GitHub.

2.2.2 In-depth Documentation

Numerov Method

In units where $\backslash(\backslash h b a r=1 \backslash$, the 1D time-independent Schrödinger equation can be expressed in the form:
$\$ \$ \backslash \operatorname{frac}\left\{\mathrm{~d}^{\wedge} 2 \backslash \mathrm{psi}\right\}\left\{\mathrm{dx}^{\wedge} 2\right\}=-2 \mathrm{~m} \backslash \operatorname{left}(\mathrm{E}-\mathrm{V}(\mathrm{x}) \backslash$ right $) \backslash \mathrm{psi}=-\mathrm{g}(\mathrm{x}) \backslash \mathrm{psi} \$ \$$
This differential equation can be solved numerically via Numerov's method (see pages 10-11). For a 1D spatial grid, the wavefunction at the $\backslash(n+1 \backslash)$ th point along the x -axis can be approximated by:
\$\$ $\backslash \mathrm{psi} _\{\mathrm{n}+1\}=\backslash \operatorname{frac}\left\{\left(12-10 \mathrm{f} _\mathrm{n}\right) \backslash \backslash \mathrm{psi} _\mathrm{n}-\mathrm{f} _\{\mathrm{n}-1\} \backslash \mathrm{psi} _\{\mathrm{n}-1\}\right\}\left\{\mathrm{f} _\{\mathrm{n}+1\}\right\} \$ \$$
where: $\$ \$$ f_n lequiv $\backslash \operatorname{left}\left(1+\backslash f r a c\left\{\backslash d e l t a x^{\wedge} 2\right\}\{12\} g _n \backslash r i g h t\right), ~ g _n=2 m\left(E-V\left(x _n\right)\right) \$ \$$
Hence to start Numerov's method we require $\backslash\left(\backslash p s i _0 \backslash\right)$ and $\backslash\left(\backslash p s i _1 \backslash\right)$, in other words $\backslash\left(\backslash p s i\left(x=x _\{\min \}\right) \backslash\right)$ and $\backslash(\backslash p s i(x$ $\left.\left.=x_{-}\{\min \}+\backslash d e l t a x\right) \backslash\right)$, where $\backslash(\backslash d e l t a x \backslash)$ is the step size.
When investigating bound states we require $\backslash(\backslash \mathrm{psi}(x \backslash t o \backslash p m ~$ infty $)=0 \backslash$). However, we cannot consider an infinite domain. Instead we must choose a large enough domain that setting $\backslash\left(\backslash p s i\left(x=x _\{\min \}\right)=0 \backslash\right)$ is a good approximation (and similarly for $\backslash\left(x _\{\max \} \backslash\right)$).

With Numerov's Method in place, the shooting method can be used to find the energy eigenstates. It goes as follows:

1. Setting $\backslash\left(\backslash p s i _0=0 \backslash\right)$ approximately satisfies the boundary condition that the wavefunctions must vanish at the boundary.
2. Since the Schrödinger Equation is linear and homogeneous we are free to set $\backslash\left(\backslash p s i _1 \backslash\right)$ to any non-zero constant as multiplying by a constant does not affect the solution. In this case we set $\backslash\left(\backslash p s i _1=\\right.$ delta $\left.x \backslash\right)$.
3. Using the Numerov algorithm, $\backslash(\backslash p s i(x) \backslash)$ can be found. Exponential growth near $\backslash\left(x_{-}\{\max \} \backslash\right)$ is observed if the input energy is not near a energy eigenvalue

Argument list

numerov(x,dx,V,E,initial_values,params)
This function performs a Numerov integration at the given energy within the given domain and returns the un-normalised wavefunction evaluates it over the whole domain.

Parameters:

x : numpy array
An N element numpy array of equally spaced points (creating using numpy linspace is advised) at which the wavefunction will be evaluated

```
dx: float
```

The spacing between points in the x array

V: function

Function which takes x as an argument and returns the value of potential at that point, $\mathrm{V}(\mathrm{x})$

E: float

The energy of the time independent wavefunction. This will give exponential growth if E does not correspond to a bound or free state energy eigenvalue.
inital_value: list
A list with 2 elements. The first of these is the boundary condition for the wavefunction at the lowest value spatial coordinate. The second is used to initialise the next point in from this, which must be non-zero. Apart from this requirement, the second element only effects normalisation.
params: list
List which can be used within your code to hold various physical parameters. The first element must be equal to the particle mass, but apart from this the size of the list and the other parameters are not called

Returns:

A numpy array containing the approximated wavefunction evaluated at x

Bisection Search

We wish to find a function $\backslash(f(E)=0 \backslash)$. First we must find values of $\backslash(E \backslash)$ which bracket the solution, that is: $\$ \$ f\left(E _1\right)$ $<0, f\left(E _2\right)>0 \$ \$$ By evaluating $\backslash(f \backslash)$ at the midpoint, $\backslash\left(E _3=\backslash f r a c\{1\}\{2\}\left(E _1+E _2\right) \backslash\right)$, we can rebracket our solution. Hence the solution will be converge on iteration. Solutions can converge from both above and below $\backslash(0 \backslash)$, so your search algorithm should account for this.

The search should stop when $\backslash(\backslash$ left $\mid \mathrm{f}(\mathrm{E}) \backslash$ right $<$ lepsilon \backslash) where $\backslash(\backslash e p s i l o n \backslash)$ is a suitably small number.

Dotted lines show the bracket solutions and the solid lines show the progression of the search to obtain the ground state of the potential.

Argument list

bisection_search (x,dx,V,params,bracket_E,tolerance $=0.5$, max_evals $=1000$)
Uses the Numerov method to perform a bisection search in energy for a wavefunction which goes to zero at the boundaries

Parameters:

x : numpy array
An N element numpy array of equally spaced points (creating using numpy linspace is advised) at which the wavefunction will be evaluated

dx: float

The spacing between points in the x array

V: function

Function which takes x as an argument and returns the value of potential at that point, $\mathrm{V}(\mathrm{x})$
params: list
List which can be used within your code to hold various physical parameters. The first element is required to be equal to the particle mass, but apart from this the size of the list and the other parameters are not called
bracket_E: list
A 2 element list which expresses a range in which the energy eigenvalue(s) lie. For the 2 energy values in this list, one of the values will have the Numerov approximated wavefunction above 0 and the other below 0 . The ordering of these is handled by the function.

tolerance: float

The tolerance of the bisection search i.e. if the absolute value of the wavefunction at the right-hand boundary is less than the tolerance then the search is complete.

```
max_evals: int
```

The number of search evaluations taken before the search is given up. It is more likely your bracket_E list is not wide enough or your tolerance is too low than max_evals is too low

Returns:

The un-normalised wavefunction, as a numpy array, which has satisfied the bisection search (or max_evals has been reached) and the energy eigenvalue estimate as a float

Perturbation Analysis

Using the following notation for our perturbation analysis:
Total Hamiltonian: $\$ \$ \operatorname{lhat}\{\mathrm{H}\}=\operatorname{hat}\{\mathrm{H}\}^{\wedge}\{(0)\}+\operatorname{lhat}\{\mathrm{H}\}^{\prime} \$ \$$
First order energy shift: $\$ \$ \backslash$ Delta $E _n^{\wedge}\{(1)\}=$ langle $n^{\wedge}\{(0)\}|\backslash h a t\{H\}| n^{\wedge}\{(0)\} \backslash$ rangle $\$ \$$
First order perturbed wavefunctions: $\$ \$ \mid \mathrm{n}^{\wedge}\{(1)\}$ ไrangle $\backslash \operatorname{approx} \mid \mathrm{n}^{\wedge}\{(0)\} \backslash$ rangle $+\backslash$ sum_ $\{\mathrm{m} \backslash \mathrm{neq} \mathrm{n}\} \mid \mathrm{m}^{\wedge}\{(0)\}$ \rangle \backslash frac $\left\{\backslash\right.$ langle $\mathrm{m}^{\wedge}\{(0)\}|\operatorname{hat}\{\mathrm{H}\} ’| \mathrm{n}^{\wedge}\{(0)\} \backslash$ rangle $\}\left\{\mathrm{E}_{-} \mathrm{n}^{\wedge}\{(0)\}-\mathrm{E}_{-} \mathrm{m}^{\wedge}\{(0)\}\right\} \$ \$$

Evaluating inner products are done using an integration over space i.e. $\$ \$$ langle $n^{\wedge}\{(0)\} \mid$ hat $\{H\}^{\prime} \mid n^{\wedge}\{(0)\} \backslash$ rangle $=\backslash \operatorname{int} _\left\{x_{-}\{\min \}\right\}^{\wedge}\left\{x_{-}\{\max \}\right\} \backslash p s i _\{n\}^{\wedge}\{(0)\}(x) \backslash \operatorname{hat}\{H\}^{\prime}(x) \backslash p s i _\{n\}^{\wedge}\{(0)\}(x) d x \$ \$$
These are calculated using SciPy's quad integration function.

For first_order_wf, $\backslash\left(\mathrm{I}_{-}\{\mathrm{mn}\}=\backslash\right.$ langle $\mathrm{m}^{\wedge}\{(0)\}\left|\backslash \operatorname{hat}\{\mathrm{H}\}^{\wedge}\right| \mathrm{n}^{\wedge}\{(0)\} \backslash$ rangle $\left./\left(\mathrm{E}_{-} \mathrm{n}^{\wedge}\{(0)\}-\mathrm{E} _\mathrm{m}^{\wedge}\{(0)\}\right) \backslash\right)$ is calculated for m values around n until $\backslash\left(I_{-}\{m n\}<\right.$ lepsilon $)$, where $\backslash(l e p s i l o n \backslash)$ is the given tolerance. Two seperate iterations are run for even and odd values of m around n as the form of the perturbation may cause inner products to vanish for certain configurations of even/odd wavefunctions.

If return_list is set to True, the list of m values used in the sum is returned along with the corresponding $\backslash\left(I_{-}\{m n\} \backslash\right)$ values.

The perturbed wavefunction is calculated within the function using the following sum: $\$ \$ \mid \mathrm{n}^{\wedge}\{(1)\}$ rangle lapprox I $\mathrm{n}^{\wedge}\{(0)\} \backslash$ rangle $+\backslash$ sum_ $\left\{\mathrm{k}\right.$ lin $\left.\mathrm{k} _\{\text {list }\}\right\} \mathrm{I}_{-}\{\mathrm{kn}\} \mid \mathrm{k}^{\wedge}\{(0)\} \backslash$ rangle $\$ \$$ This is returned as a function of position i.e.

```
x = np.linspace(-10.,10.,100)
perturb_wf = first_order_wf(n,H,unperturb_wf,unperturb_erg,params)
perturb_wf_x = perturb_wf(x)
```

Here perturb_wf_x is a numpy array containing the perturbed wavefunction evaluated at all the points in x

Argument list

first_order_energy_sft(n,H,unperturb_wf,params,limits = [-np.inf,np.inf])
Works out the 1st order energy shift from time independent perturbation theory for a given unperturbed system and the applied perturbation

Parameters:

n : int or list
Principal quantum number (or list of these) which labels the unperturbed wavefunctions

H: function

The applied perturbation as a function of position
unperturb_wf: function
A function which is passed params and n, returning a function of position e.g.

```
def unperturb_wf(params,n):
    a = params[0]
    m = n+1
    def psi_n(x):
        return np.sqrt(2./a)*np.sin((m*np.pi/a)*(x+a/2.))
    return psi_n
```

Here $\mathrm{psi} \mathrm{n}(\mathrm{x})$ is the returned function of position
params: list
List which can be used within your code to hold various physical parameters used by unperturb_wf and other functions (see later)
limits: list
List containing the integration limits for the inner product of the wavefunctions and the perturbation. Default is the whole space. For hard wall potentials adjust these limits to respect the boundaries

Returns:

A list or float depending on the input argument n containing the first energy shifts to the unperturbed wavefunctions for the given quantum numbers in n
first_order_wf(n,H,unperturb_wf,unperturb_erg,params,tolerance $=0.01$, limits $=[-n p . i n f, n p . i n f]$, return_list $=$ False)

Calculates the 1st order perturbed wavefunction for a given unperturbed system and the applied perturbation. The system is defined by its known unperturbed wavefunctions and energies. This function takes similar parameters as first_order_energy_sft (see above) so only new parameters will be defined.

Unique Parameters:

unperturb_erg: function
A function which is passed params and n and returns the energy of the n-th unperturbed eigenstate e.g. for a harmonic oscillator

```
def unperturb_erg(params,n):
    return (n+0.5) *params[1]
```

where params[1] contains the angular frequency (for hbar $=1$)
tolerance: float
The value below which terms in the 1st order wavefunction sum are ignored
return_list: float
Set to True if you require the perturbation sum prefactors and values of the principal quantum numbers of the unperturbed wavefunctions

Returns:

A function of position which corresponds to the 1 st order perturbed wavefunction and, if return_list $=$ True, copies of the principal quantum number lists and the sum prefactors list which were used to calculate the resultant perturbed wavefunction

SpinSystem

The SpinSystem class represents a system of spins interacting with one another. Interactions with an external inhomogeneous magnetic field can be included as an optional argument (note that the gyromagnetic ratios are unity).

Functions

__init__(spins, couplings, B_field $=$ None, scaling $=[1.0,1.0,1.0])$
Initialises the spin system object.

Parameters

spins: list or numpy array
Spin quantum numbers of the particles (integer or half-integer) e.g. [0.5, 1.0]
couplings: list or numpy array
NxN list for a system of N spins. The element $J[i, j]$ gives the coupling strength between spins i and j.
Positive coupling favours spin alignment. e.g. [[0,1],[1,0]]
B_field: list, optional
List of 3-dimensional vectors, $\left[B _x, B_{-} y, B_{-} z\right]$, representing the magnetic flux density at each spin. e.g. [[3.0, 0, 0], [1.5, 0, 0]]
scaling: list, optional

List of floats which scale the spin-spin coupling in different directions. scaling[0] scales the $\mathrm{Sx}-\mathrm{Sx}$ coupling, [1] the Sy-Sy coupling and [2] the Sz-Sz coupling.

create_Hamiltonian()

Create a Hamiltonian with spin-pairing given by the coupling array. A linear coupling between spins and the magnetic field is included if a B_field was used to initialise the SpinSystem.
The Hamiltonian acts on Kronecker products of the spins' states.
This function is called on initialisation and gives the instance of SpinSystem the attribute H, the Hamiltonian, as a numpy array.
get_energies()
Calculates the energy levels and eigenstates of the Hamiltonian using numpy.linalg.eigh. They are then stored as attributes energies and states in order of increasing energy, both are numpy arrays.

count_multiplicities(tolerance $\boldsymbol{=} \mathbf{0 . 0 0 0 1}$)

Counts the multiplicities of the energy eigenvalues, generating a list of multiplicities and list of nonrepeated energies. These lists are subsequently stored as attributes multiplicities and reduced_energies.

Parameters:

tolerance: float, optional
Energy levels within tolerance of one another are considered degenerate.

Attributes

The following attributes are created on initialisation

N : int
Number of spins in the system.
J : numpy array
NxN array of coupling strengths. $J[i, j]$ is the coupling strength between spins i and j.
Sx: list of numpy arrays
A list of x-angular momentum operators corresponding to the Hilbert spaces of each spin.
Sy and Sz: list of numpy arrays
See $S x$.
I: list of numpy arrays
A list of the identity operators corresponding to the Hilbert spaces of each spin.
B: numpy array
The magnetic flux densities at each spin in the system. $\mathrm{B}[\mathrm{i}, \mathrm{j}]$ is the jth component of the magnetic field at the ith spin.

H: numpy array
The Hamiltonian of the system.
The remaining attributes are not created on initialisation
energies: numpy array
Energy eigenvalues of the system, repeated according to degeneracy and stored in order of increasing energy.
Created by get_energies() and count_multiplicities()
states: numpy array
Energy eigenstates, stored in order of increasing energy.
Created by get_energies() and count_multiplicities()
multiplicities: list
List of the multiplicities of the energy eigenstates in order of increasing energy.
reduced_energies: list
List of the non-repeated energy levels. e.g. an 8 -fold degenerate state will feature only once in this list.
The list below summarises the functions, their input arguments and their outputs for quick reference for the informed user:

2.2.3 Functions

```
numerov(x,dx,V,E,initial_values,params)
```

This function performs a Numerov integration at the given energy within the given domain and returns the un-normalised wavefunction evaluated at the given spatial coords

Parameters:

x : numpy array
An N element numpy array of equally spaced points in space (creating using numpy linspace is advised) at which the wavefunction will be evaluated

$$
d x: \text { float }
$$

Must give the spacing between points in the x array

V: function

Pass a function which takes x as an argument and returns the value of potential at that point, $\mathrm{V}(\mathrm{x})$

E: float

The energy of the time independent wavefunction. This will give exponential growth if E does not correspond to a bound or free state energy eigenvalue.
inital_value: list
A list with 2 elements. The first of these is the boundary condition for the wavefunction at the lowest value spatial coordinate. The second of these is used to initialise the next point in from this, it must be non-zero but apart from this requirement it only effects normalisation (see in detail documentation)
params: list
List which can be used within your code to hold various physical parameter. The first element is required to be equal to the particle mass but apart from this size of the list and the other parameters are not called

Returns:

A numpy array containing the approximated wavefunction evaluated at x

```
bisection_search(x,dx,V,params,bracket_E,tolerance = 0.5,max_evals = 1000)
```

Uses the Numerov method to perform a bisection search in energy for a wavefunction which goes to zero at the boundaries. Shares similar arguments with the numerov function above see $x, d x, V$, params

Unique Parameters:

bracket_E: list
A 2 element list which expresses a range in which the energy eigenvalue(s) lie. For the 2 energy values in this list, one of the values will have the Numerov approximated wavefunction above 0 and the other below 0 . The ordering of these is handled by the function.
tolerance: float
The tolerance of the bisection search i.e. if the absolute value of the wavefunction at right hand boundary is less than the tolerance then the search is complete.

```
max_evals: int
```

The number of search evaluations taken before the search is given up. It is more likely your bracket_E list is not wide enough or your tolerance is too low than max_evals is too low

Returns:

The un-normalised wavefunction, as a numpy array, which has satisfied the bisection search (or max_evals has been reached) and the energy eigenvalue estimate as a float

```
first_order_energy_sft(n,H,unperturb_wf,params,limits = [-np.inf,np.inf])
```

Works out the 1st order energy shift from time independent perturbation theory for a given unperturbed system and the applied perturbation

Parameters:

n: int or list
Principal quantum number (or list of these) which labels the unperturbed wavefunctions

H: function

The applied perturbation as a function of position
unperturb_wf: function
A function which is passed params and n and returns a function of position e.g.

```
def unperturb_wf(params,n):
    a = params[0]
    m = n+1
    def psi_n(x):
        return np.sqrt(2./a)*np.sin((m*np.pi/a)*(x+a/2.))
        return psi_n
```

Here $\mathrm{psi} _\mathrm{n}(\mathrm{x})$ is the returned function of position
params: list
List which can be used within your code to hold various physical parameter used by unperturb_wf and other functions (see later)
limits: list

List containing the integration limits for the inner product of the wavefunctions and the perturbation. Default is the whole space. For hard wall potentials adjust these limits to respect the boundaries

Returns:

A list or float depending on the input argument n containing the first energy shifts to the unperturbed wavefunctions for the given quantum numbers in n
first_order_wf(n,H,unperturb_wf,unperturb_erg,params,tolerance $=0.01$, limits $=[-n p . i n f, n p . i n f]$, return_list = False)

Calculates the 1st order perturbed wavefunction for a given unperturbed system and the applied perturbation. The system is defined by its known unperturbed wavefunctions and energies. This function takes similar parameters as first_order_energy_sft (see above) so only new parameters will be defined. Further documentation can be found on the functions documentation page

Unique Parameters:

unperturb_erg: function
A function which is passed params and n and returns the energy of the n-th unperturbed eigenstate e.g. for a harmonic oscillator

```
def unperturb_erg(params,n):
    return (n+0.5)*params[1]
```

where params[1] contains the angular frequency (for hbar $=1$)
tolerance: float
The value below which terms in the 1st order wavefunction sum are ignored
return_list: float
Set to True if you require the perturbation sum prefactors and values of the principal quantum numbers of the unperturbed wavefunctions

Returns:

A function of position which corresponds to the 1 st order perturbed wavefunction and if return_list = True, copies of the principal quantum number lists and the sum prefactors list which were used to calculate the resultant perturbed wavefunction

```
create_Su(s)
```

Returns the 'up' angular momentum ladder operator in the z basis.

Parameters:

s: int or float
The angular momentum quantum number, $1 / 2$ for isolated electrons, 1 for a hydrogenic p-orbital etc. If s is a float, it must be a half-integer.

Returns:

numpy array with complex elements

```
create_Sd(s)
```

Returns the 'down' angular momentum ladder operator in the z basis. Usage is identical to create_Su.
create_Sx(s)
Returns the ' x ' angular momentum operator in the z basis. Usage is identical to create_Su.
create_Sy(s)
Returns the ' y ' angular momentum operator in the z basis. Usage is identical to create_Su.
create_Sz(s)
Returns the ' z ' angular momentum operator in the z basis. Usage is identical to create_Su.

2.3 Partial Differential Equations

2.3.1 Introduction to the Partial Differential Equation module

This module contains functions for use in solving PDEs, namely the wave equation, the heat equation and the time dependent Schrödinger equation. These are solved using the Lax-Wendroff, Crank-Nicolson and Split Step Fourier methods respectively. Documentation explaining the use of each function and the algorithms used within will be presented in individual sections. A short introduction to finite difference methods will also be presented.

You can find the source code for this module on the GitHub.

2.3.2 Introductory Documentation

Finite Difference Methods

In these methods, partial derivatives in partial differential equations are approximated by linear combinations of function values at the grid points. For first order derivatives, the approximation needed can easily be seen from their definition:
$\$ \$ \backslash \operatorname{frac}\{\mathrm{~d} f\}\{\mathrm{d} \mathrm{x}\}=\backslash \lim _\{\backslash \text { Delta } \mathrm{x} \backslash \text { to } 0\} \backslash \operatorname{frac}\{\mathrm{f}(\mathrm{x}+\backslash$ Delta x$)-\mathrm{f}(\mathrm{x})\}\{\backslash$ Delta x$\} \$ \$$
Hence if we take $\backslash(\backslash$ Delta $x \backslash)$ to be sufficiently small then the derivative will be well approximated by the following equivalent (in the limit of $\backslash(\backslash$ Delta $x \backslash t o ~ 0 \backslash)$) expressions:
$\$ \$ \backslash \operatorname{frac}\{\mathrm{~d} f\}\{\mathrm{d}\}\} \backslash \operatorname{approx} \backslash \operatorname{frac}\{\mathrm{f}(\mathrm{x}+\backslash \operatorname{Delta} \mathrm{x})-\mathrm{f}(\mathrm{x})\}\{$ Delta x$\} \$ \$ \$ \$ \backslash \operatorname{rrac}\{\mathrm{~d} \mathrm{f}\}\{\mathrm{d} \mathrm{x}\} \backslash \operatorname{approx} \backslash \operatorname{frac}\{\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{x}-\backslash \operatorname{Delta}$ $\mathrm{x})\}\{\backslash \operatorname{Delta} \mathrm{x}\}$ \$\$ \$\$ $\backslash \operatorname{frac}\{\mathrm{d} f\}\{\mathrm{d} \mathrm{x}\} \backslash \operatorname{approx} \backslash \operatorname{frac}\{\mathrm{f}(\mathrm{x}+\backslash \operatorname{Delta} \mathrm{x})-\mathrm{f}(\mathrm{x}-\backslash$ Delta x$)\}\{2 \backslash$ Delta x$\} \$ \$$

If we now create a spatial gird, $\backslash\left(x_{_} _i=x _0+i \backslash D e l t a x \backslash\right)$, then labelling the function, $\backslash(f)$, on these grid points as $\backslash\left(f _i \backslash\right)$, then the finite differences as defined as:

Backward difference: $\$ \$ \ \operatorname{left}\left(\backslash \operatorname{frac}\{d f\}\{d x\} \backslash\right.$ right)_i lapprox $\backslash f r a c\left\{f _\{i\}-f _\{i-1\}\right\}\{\backslash D e l t a x\} \$ \$$
Central difference: $\$ \$ \backslash \operatorname{left}(\backslash \operatorname{frac}\{\mathrm{~d} f\}\{\mathrm{d} x\} \backslash \operatorname{right}) _i \backslash \operatorname{approx} \backslash \operatorname{frac}\left\{f _\{i+1\}-f _\{i-1\}\right\}\{2 \backslash D e l t a \mathrm{x}\} \$ \$$
The errors in these approximations can be found by considering the Taylor expansions of $\backslash\left(f_{-}\{i+1\} \backslash\right)$ and $\backslash\left(f _\{i-1\} \backslash\right)$:
\$\$ T_1: $f_{-}\{i+1\}=f_{-}\{i\}+\backslash \operatorname{Delta} x \backslash \operatorname{left}(\backslash \operatorname{frac}\{d f\}\{d x\} \backslash \operatorname{right}) _i+\backslash f r a c\left\{\backslash \operatorname{Delta} x^{\wedge} 2\right\}\{2\} \backslash \operatorname{left}\left(\backslash f r a c\left\{d^{\wedge} 2 f\right\}\left\{d x^{\wedge} 2\right\}\right.$ \right)_i + \mathcal\{O\} (\Delta x^3) \$\$
\$\$ T_2: f_\{i-1\} =f_\{i\}-\Deltax $\backslash \operatorname{left}(\backslash \operatorname{frac}\{d f\}\{d x\} \backslash \operatorname{right}) _i+\backslash \operatorname{frac}\left\{\backslash \operatorname{Delta} \mathrm{x}^{\wedge} 2\right\}\{2\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{d}^{\wedge} 2 \mathrm{f}\right\}\left\{\mathrm{d} \mathrm{x}^{\wedge} 2\right\}\right.$ \right)_i - \mathcal\{O\} (\Delta x^3) \$\$

Hence $\backslash\left(T_{-} 1 \backslash\right)$ implies the forward difference has error of order $\backslash\left((D e l t a x \backslash)\right.$ and similarly for $\backslash\left(T_{-} 2 \backslash\right)$ and the backward difference. However considering $\backslash\left(T_{-} 1-T_{-} 2 \backslash\right)$ we see the central difference has error of order $\backslash\left(\backslash \operatorname{Delta} x^{\wedge} 2 \backslash\right)$. Higerorder approximations can be found by considering linear combinations of Taylor expansions including $\backslash\left(f_{-}\{i+2\} \backslash\right)$ and $\backslash\left(f _\{i-2\} \backslash\right)$.

The figure above shows estimates of the gradient of $\arctan (x)$ at $x=1$ using the forward, backward and central difference methods. The hashed line shows the central difference result while the other lines are the first order forward and backward methods. A $\backslash(\backslash$ Delta $x=0.75 \backslash)$ was used, large to exaggerate the errors in these methods.

For second order derivatives, the approximation can be found via $\backslash\left(T_{-} 1+T_{-} 2 \backslash\right)$:
$\$ \$ T_{-} 1+T_{-} 2: f_{-}\{i+1\}+f_{-}\{i-1\}=2 f_{-}\{i\}+\backslash \operatorname{Delta} x^{\wedge} 2 \backslash \operatorname{left}\left(\backslash f r a c\left\{d^{\wedge} 2 f\right\}\left\{d x^{\wedge} 2\right\} \backslash r i g h t\right) _i+\backslash m a t h c a l\{O\}$ ($(D e l t a$ $\left.x^{\wedge} 3\right) \$ \$$

Therefore: $\$ \$ \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{~d}^{\wedge} 2 \mathrm{f}\right\}\left\{\mathrm{d}_{\mathrm{x}}{ }^{\wedge} 2\right\} \backslash \operatorname{right}\right) _i \backslash \operatorname{approx} \backslash \operatorname{frac}\left\{\mathrm{f}_{-}\{\mathrm{i}+1\}-2 \mathrm{f}_{-}\{\mathrm{i}\}+\mathrm{f}_{-}\{\mathrm{i}-1\}\right\}\left\{\backslash \operatorname{Delta} \mathrm{x}^{\wedge} 2\right\}+\backslash m a t h-$ cal\{O\} (Delta x) \$\$

These methods can be combined to evaulate mixed derivatives.
For variable coefficients, e.g. $\backslash(f(x)=d(x) \backslash f r a c\{d u\}\{d x\} \backslash)$, we can find the first order derivative using half-step central differences $\backslash\left(\backslash \operatorname{left}(\backslash f r a c\{d f\}\{d x\} \backslash\right.$ right $\left.) _i \backslash a p p r o x \backslash f r a c\left\{f _\{i+1 / 2\}-f _\{i-1 / 2\}\right\}\{\backslash D e l t a x\} \backslash\right):$
\$\$ $\backslash \operatorname{left}(\backslash f r a c\{d f\}\{d x\} \backslash \operatorname{right}) _i \backslash a p p r o x ~ \ f r a c\left\{f _\{i+1 / 2\}-f _\{i-1 / 2\}\right\}\{\backslash D e l t a x\}=\backslash f r a c\left\{d _\{i+1 / 2\} \backslash \operatorname{left}(\backslash f r a c\{d u\}\{d\right.$
 (d_\{i+1/2\}+d_\{i-1/2\})u_i+d_\{i-1/2\}u_\{i-1\}\}\{\Delta x^2\}\$\$

2.3.3 In-depth Documentation

Wave Equation via Lax/Lax-Wendroff schemes

The wave equations in 1D and 2D can be expressed as (for constant wave speed):
$\$ \$ \backslash \operatorname{frac}\left\{\backslash\right.$ partial $\left.{ }^{\wedge} 2 \backslash \operatorname{psi}\right\}\left\{\backslash\right.$ partial $\left.t^{\wedge} 2\right\}=c^{\wedge} 2 \backslash$ frac $\{\backslash$ partial^2 $2 \backslash p s i\}\left\{\backslash\right.$ partial $\left.x^{\wedge} 2\right\} \$ \$$
 $\left.y^{\wedge} 2\right\}$ \right) $\$ \$$
A large class of inital value PDEs can be case into a flux-conservative form. In 1D:
$\$ \$ \backslash \operatorname{frac}\{\backslash$ partial $u\}\{$ partial $t\}=-\backslash f r a c\{\backslash$ partial $F\}\{\backslash$ partial $x\} \$ \$$
If we re-express the 1D wave equation in a flux-conservative form (which allows for the use of established numerical methods) then we obtain:
 t) \$\$
$\$ \$ \mathrm{~F}=\backslash \operatorname{begin}\{$ bmatrix $\} 0 \&-c \backslash \backslash-c \& 0 \backslash e n d\{$ bmatrix $\} \backslash c d o t$ begin $\{$ bmatrix $\} r$ r \backslash slend $\{$ bmatrix $\} \$ \$$
We now have a first order differential equation to solve of a given inital value problem.
Unfortunately a simple finite difference method is unconditionally unstable. What a shame.
For the 1D wave equation we shall use the two-step Lax Wendroff scheme. This includes evaulating u at half steps, using this to find the half step fluxes and using a properly centered expression to perform the full time step. Using the notation introduced in the finite difference method documentation page:
$\$ \$ u^{\wedge}\{n+1 / 2\} _\{j+1 / 2\}=\backslash \operatorname{frac}\{1\}\{2\}\left(u_{-}\{j+1\}^{\wedge} n+u_{-} j^{\wedge} n\right)-\backslash$ frac $\{\backslash$ Delta $t\}\left\{2 \backslash \operatorname{Deltax} x\left(F^{\wedge} n_{-}\{j+1\}-F^{\wedge} n_{-} j\right) \$ \$\right.$
$\$ \$ u^{\wedge}\{n+1\}_{-}\{j\}=u_{-} j^{\wedge} n-\backslash$ frac $\{\backslash$ Delta $t\}\{$ Delta $x\}\left(F^{\wedge}\{n+1 / 2\}_{-}\{j+1 / 2\}-F^{\wedge}\{n+1 / 2\}_{-}\{j-1 / 2\}\right) \$ \$$
The stability of the scheme is parameterised by the Courant number, $\backslash($ alpha $=\mathrm{c} \backslash$ Delta t / \backslash Delta $\mathrm{x} \backslash)$, and the criteria for stability is that $\backslash(\backslash a l p h a \backslash l e q 1 \backslash)$. This ensures $\backslash(c \backslash$ Delta $t \backslash l e q \backslash$ Delta $x \backslash)$, hence information between spatial points can not have been communicated before the next time step is calculated.
Boundary conditions can be set to be periodic, fixed or reflective. These are defined in our flux-conservative formulation as:

Fixed (noting $\backslash(\mathrm{s}=\backslash$ frac $\{\backslash$ partial $\backslash \mathrm{psi}\}\{\backslash$ partial t$\} \backslash)$):
$\$ \$ \mathrm{~s}\left(\mathrm{x}=\mathrm{x} _\{\min \}\right)=\mathrm{s}\left(\mathrm{x}=\mathrm{x}_{-}\{\max \}\right)=0 \$ \$$
Reflective (noting $\backslash(\mathrm{r}=\mathrm{c} \backslash$ frac $\{\backslash$ partial $\backslash \mathrm{psi}\}\{\backslash$ partial x$\} \backslash)$):
$\$ \$ r\left(x=x _\{\min \}\right)=r\left(x=x _\{\max \}\right)=0 \$ \$$
Periodic:
\$\$ \psi_N = \psi_1, \psi_0 = \psi_\{N-1\} \$\$
Now if we take the wave speed to be a function of position, $\backslash(c(x) \backslash)$, then when the flux, $\backslash(F \backslash)$, is evaulated at grid points then the wave speed at that point must be used e.g
$\$ \$ F^{\wedge} n_{-}\{j+1\}=-\operatorname{lbegin}\{$ bmatrix $\} c\left(x_{-}\{j+1\}\right) s^{\wedge} n_{-}\{j+1\} \backslash c\left(x_{-}\{j+1\}\right) r^{\wedge} n_{-}\{j+1\}$ lend $\{$ bmatrix $\} \$ \$$
As an example of its use, here is a gaussian disturbance reflecting from a wall with fixed boundary conditions:

2D Lax Scheme

In 2D, the flux conservative form includes an additional flux:

We define our new $\backslash(\mathrm{u} \backslash)$ vector as the following:
$\$ \$ \mathrm{u}=\backslash$ begin $\{$ bmatrix $\} \mathrm{r} \backslash \backslash 1 \backslash$ slend $\{$ bmatrix $\}, r$ lequiv $\mathrm{c} \backslash$ frac $\{\backslash \operatorname{partial} \backslash \mathrm{psi}\}\{\backslash$ partial x$\}, 1$ lequiv $\mathrm{c} \backslash$ frac $\{\backslash \mathrm{partial}$ \psi\} \{\partial y\}, s lequiv \frac $\{$ partial $\backslash p s i\}\{$ partial t $\} \$ \$$
$\$ \$ \backslash \operatorname{frac}\{\backslash$ partial $\}\}\{\backslash$ partial $t\}=\backslash$ frac $\{\backslash$ partial $\}\{\backslash$ partial x$\}(\mathrm{c} \mathrm{s}) \$ \$$
\$\$ \backslash frac $\{\backslash$ partial 1$\}\{\backslash$ partial t$\}=\backslash$ frac $\{\backslash$ partial $\}\{\backslash$ partial y $\}(\mathrm{c} \mathrm{s}) \$ \$$

Hence the fluxes are given by:
 slend\{bmatrix \} \$\$
 slend\{bmatrix \} \$\$

Plugging in the definitions of $\backslash(\mathrm{r} \backslash), \backslash(\mathrm{l} \backslash)$ and $\backslash(\mathrm{s} \backslash)$ to the expression for $\backslash(\backslash \operatorname{dot}\{\mathrm{s}\} \backslash)$, the 2 D wave equation is recovered.
Using a 2D Lax scheme, the components of $\backslash(u \backslash)$ can be calculated by:
$\$ \$ u^{\wedge}\{n+1\} _\{j, 1\}=\backslash \operatorname{frac}\{1\}\{4\} \quad\left(u^{\wedge} n_{-}\{j+1, l\}+u^{\wedge} n_{-}\{j-1, l\}+u^{\wedge} n_{-}\{j, 1+1\}+u^{\wedge} n_{-}\{j, 1-1\}\right)-\backslash$ frac $\{$ Delta $t\}\{2$ Delta\}(F^n_\{x,j+1,l\}-F^n_\{x,j-1,1\}+F^n_\{y,j,1+1\}-F^n-\{y,j,1-1\})\$\$

Where $\backslash(\backslash$ Delta $=\backslash$ Delta $x=\backslash$ Delta $y \backslash)$. The fluxs labelled with $\backslash(x, y \backslash)$ refer to terms within the $\backslash(x, y \backslash)$ partial derivatives in the flux conservative expressions above. e.g. $\backslash\left(F_{-} x \backslash\right)$ for $\backslash(r \backslash)$ is $\left.\backslash(c s\rangle\right)$ while $\backslash\left(F_{-} y \backslash\right)$ is zero.

Boundaries conditions are dealt with in a similar way to the 1D case. But now $\backslash(11)$ vanishes at $\backslash\left(y _\{\min \} \backslash\right)$ and $\backslash\left(y_{-}\{\max \} \backslash\right)$ for reflective boundary conditions.

For 2D cases, the Courant number must now be less than $\backslash\left(2^{\wedge}\{-1 / 2\} \backslash\right)$. It should be noted that the definition of $\backslash(\mathrm{c} \backslash)$ in the Courant condition is replaced with the maximal wave speed when the wave speed is allowed to vary with position.
As an example of its use, here is a gaussian disturbance within a container with periodic boundary conditions:

Form of the wave equation for spatially varying wave speed

A important distinction should be made about the form of the wave equation. There are two possible forms of the wave equation for a variable wave speed, in 1D these are:
$\$ \$ \backslash$ frac $\left\{\backslash\right.$ partial $\left.{ }^{\wedge} 2 \backslash \operatorname{psi}\right\}\left\{\backslash\right.$ partial $\left.t^{\wedge} 2\right\}=c(x)^{\wedge} 2 \backslash$ frac $\left\{\backslash\right.$ partial $\left.{ }^{\wedge} 2 \backslash p s i\right\}\left\{\right.$ partial $\left.x^{\wedge} 2\right\} \$ \$$
$\$ \$ \backslash \operatorname{frac}\left\{\backslash \operatorname{partial}{ }^{\wedge} 2 \backslash \operatorname{psi}\right\}\left\{\backslash\right.$ partial $\left.t^{\wedge} 2\right\}=\backslash$ frac $\{\backslash$ partial $\}\{\backslash$ partial $x\} \backslash \operatorname{left}\left(c(x)^{\wedge} 2 \backslash\right.$ frac $\{\backslash$ partial $\backslash p s i\}\{\backslash$ partial $x\} \backslash$ right $)$ \$\$

In the form we have cast the wave equation we are solving for the second of these equations. This describes systems such as surface waves on a fluid. The first equation follows from the electro-magnetic Maxwell equations in 1D.

It should be noted when giving positional depedent wavespeeds with discontinuities, this will not give the familiar reflection and transmission results as the additional boundary conditions at the discontinuties are not included

Argument list

LW_wave_equation(psi_0, x_list, dx, N_t, c, a = 1., bound_cond = 'periodic',init_grad = None, init_vel = None)
This function performs the two-step Lax-Wendroff scheme for 1D problems and a Lax method for 2D problems to solve a flux-conservative form of the wave equation for variable wave speed, c.

Parameters:

psi_0: numpy array
In 1D, an N element numpy array containing the intial values of $\backslash(\backslash p s i \backslash)$ at the spatial grid points. In 2D, a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing='ij' keyword arg.
x_list: numpy array / list of numpy array
In 1D, an N element numpy array of equally spaced points in space (creating using numpy linspace or arange is advised) at which the wave will be evaluated. In 2D, a list containing two numpy arrays of length N and M respectively. These correspond to the x and y spatial grids. e.g.

```
dx = 0.01
x = dx*np.arange(201)
y = dx*np.arange(101)
psi_2d,t = pde.LW_wave_equation(psi__0_2d,[x,y],dx,N,c_2d)
```

$d x$: float
Must give the spacing between points in the x array (and y array for 2D)
$N _t$: integer

Number of time steps taken

c: function

In 1 D , must take a numpy array argument containing spatial coords and return a numpy array of equal length giving the value of the wave speed at the given positions e.g.

```
def c(x):
    return 0.5+0.5*x
```

In 2D, must take a pair of numpy arrays containing the x and y coords and return a numpy meshgrid of the wave speeds at those points e.g.

```
def c(x,y):
    XX,YY = np.meshgrid(x,y,indexing='ij')
    return 0.5+0.5*YY
```

This gives a wavespeed that's only a function of y
a: float
The Courant number, for stability of the code this must be $\backslash($ leq $1 \backslash$) (look up Courant-Friedrichs-Lewy stability criterion for information on this). For lower a, the code is more stable but the time step is reduced so more time steps (N) are required to simulate the same time length

bound_cond: string

Can be equal to 'fixed', 'reflective' and 'periodic' to impose those boundary conditions. For fixed, the wave must go to zero at the boundary. For reflective, the gradient parallel to the surface normal must vanish at the boundary. For periodic, the boundaries on opposite sides are set to be equal.

init_grad: function

A function which takes psi_0 as an argument and returns the gradient of the initial wave on the spatial grid. 1D example for a travelling Gaussian given below along with the init_vel example. For 2D, both $\(\backslash p a r t i a l ~ \ p s i / \backslash p a r t i a l ~ x ~$ ~ a n d ~ $\backslash p a r t i a l ~ \ p s i / ~ \ p a r t i a l ~ y ~$ ~ m u s t ~ b e ~ r e t u r n e d ~ i n d i v i d u a l l y . ~ F o r ~ a ~ 2 D ~ i n i t i a l l y ~\) Gaussian wave:
 $\mathrm{x}\}=-\left(\mathrm{x}-\backslash m u _\mathrm{x}\right)$ \psi_0 / \sigma^2 \$\$

```
def twoD_gaussian(XX,YY,mean,std):
    return np.exp (-((XX-mean[0])**2+(YY-mean[1])**2)/(2*std**2))
def gradient_2d(x,y,mean,std):
    XX,YY = np.meshgrid(x,y, indexing='ij')
    def D(psi_0):
        dfdx = -(XX-mean[0]) *twoD_gaussian(XX,YY,mean,std) /std**2
        dfdy = -(YY-mean[1])*twoD_gaussian(XX,YY,mean,std)/std**2
        return dfdx,dfdy
    return gradient_2d
```

Here the init_grad argument would be set to gradient_2d(x,y,mean,std) so that the LW_wave_equation program recieves the function D. This removes the need for LW_wave_equation to know the values of mean and std.

If the default argument, None, is given then the initial gradient is estimated within the program using finite differencing. It is preferable to give the program a init_grad function when there exists an analytic form.
init_vel: function
 initial wave on the spatial grid. 1D example for a travelling Gaussian given below.

If the default argument, None, is given then the initial velocity is set to zero at all points.
Having defined the variables; $\mathrm{x}, \mathrm{dx}, \mathrm{N} _\mathrm{t}$, mean and std:

```
def oneD_gaussian(x,mean,std):
    return np.exp(-((x-mean)**2)/(2*std**2))
def gradient_1d(x,mean,std):
    def D(psi_0):
        return - (x-mean)*oneD_gaussian(x,mean, std)/std**2
    return D
def velocity_1d(x,mean,std):
    def V(psi_0):
        return -c(x)*(x-mean)*oneD_gaussian(x,mean,std)/std**2
    return V
psi_ld,t = pde.LW_wave_equation(oneD_gaussian(x,mean,std), x,dx,N_t,c,
    init_vel = velocity_1d(x,mean,std), init_grad = gradient_1d(x,mean,std),
            bound_cond = 'reflective')
```


Returns:

A N x N_t numpy array, $\mathrm{N} x \mathrm{Mx}$ N_t in 2D, which contains the approximated wave at different times. A N_t element numpy array is also returned containing the time interval over which the simulation was run.

Heat Equation via a Crank-Nicolson scheme

The heat equations in 1D and 2D can be expressed as:

 \partial $\}\{$ partial y\} $\backslash \operatorname{left}(\mathrm{D} \backslash$ frac $\{$ \partial Q\} $\{$ \partial y\} \right) $\$ \$$

For 1D and constant coefficient D , using a finite differencing method we can obtain a stable algoritm (unlike for the wave equation):
$\$ \$ \backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-} \mathrm{j}-\mathrm{Q}^{\wedge}\{\mathrm{n}\} _j\right\}\{\backslash \operatorname{Delta} \mathrm{t}\}=\mathrm{D} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge} \mathrm{n}_{-}\{j+1\}-2 \mathrm{Q}^{\wedge} \mathrm{n}_{-} \mathrm{j}+\mathrm{Q}^{\wedge} \mathrm{n}_{-}\{\mathrm{j}-1\}\right\}\left\{\backslash\right.\right.$ Delta $\left.\mathrm{x}^{\wedge} 2\right\} \backslash$ right $) \$ \$$
However in order to observe features of scale
(\lambda $\backslash g g \backslash D e l t a x \backslash)$ with a stable result, the number of time steps needed is unfeasibly large. As usual we will have to be smarter.

The above method is called fully explicit, if instead we evaulate the RHS at the time step $\backslash\left(\mathrm{t} _\{\mathrm{n}+1\} \backslash\right)$ we create a fully implicit method:

```
\(\$ \$ \backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-} \mathrm{j}-\mathrm{Q}^{\wedge}\{\mathrm{n}\}_{-} \mathrm{j}\right\}\{\) Delta t\(\}=\mathrm{D} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-}\{\mathrm{j}+1\}-2 \mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-} \mathrm{j}+\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-}\{j-1\}\right\}\{\backslash \operatorname{Delta}\right.\)
\(\left.x^{\wedge} 2\right\}\) ไright) \(\$ \$\)
```

This scheme is unconditionally stable yet first order in time and second order in space. We can form a method which is second order in both space and time and unconditionally stable by forming the average of the explicit and implicit schemes. This is the Crank-Nicolson scheme:
$\$ \$ \backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-} \mathrm{j}-\mathrm{Q}^{\wedge}\{\mathrm{n}\}_{-} \mathrm{j}\right\}\{\operatorname{Delta} \mathrm{t}\}=\backslash \operatorname{frac}\{\mathrm{D}\}\{2\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-}\{\mathrm{j}+1\}-2 \mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-} \mathrm{j}+\mathrm{Q}^{\wedge}\{\mathrm{n}+1\}_{-}\{j-1\}\right.\right.$ $\left.+Q^{\wedge} n_{-}\{j+1\}-2 Q^{\wedge} n_{-} j+Q^{\wedge} n_{-}\{j-1\}\right\}\left\{\right.$ Delta $\left.x^{\wedge} 2\right\}$ tright) $\$ \$$

We now have a suitable algorithm for solving the heat equation. But it would seem it requires knowledge of $\backslash(\mathrm{Q})$ at later time steps. However this notion can be dispelled by writing the above in a matrix equation form:
 $\& \backslash c d o t s ~ \ \backslash$ \cdots $\& 0 \&-s / 2 \& 1+s \& \backslash c d o t s ~ \ \backslash \& \backslash v d o t s ~ \& ~ \backslash v d o t s ~ \& ~ \backslash v d o t s ~ \& ~ l e n d\{b m a t r i x\} ~ \backslash b e g i n\{b m a t r i x\} \backslash v d o t s$ $\backslash \backslash Q^{\wedge}\{n+1\}_{-}\{j+1\} \backslash \backslash Q^{\wedge}\{n+1\}_{-}\{j\} \backslash \backslash Q^{\wedge}\{n+1\}_{-}\{j-1\} \backslash \backslash$ vdots $\backslash e n d\{$ bmatrix $\}=\backslash$ begin $\{$ bmatrix $\} \&$ vdots $\& ~ \ v d o t s \&$
 \& \vdots \& \vdots \& \vdots \& lend\{bmatrix\} \begin\{bmatrix } \} \backslash v d o t s ~ \ \backslash Q ^ { \wedge } \{ n \} _ \{ j + 1 \} \backslash Q ^ { \wedge } \{ n \} _ \{ j \} \backslash \backslash Q ^ { \wedge } \{ n \} _ \{ j - 1 \} \backslash \backslash lvdots \end } \{ bmatrix \} + begin \{ bmatrix \} \backslash v d o t s ~ \ \backslash \backslash b.c.s \backslash \backslash \backslash \backslash lvdots \backslash e n d \{ bmatrix \} \$ \$
Where $\backslash\left(s=\backslash \operatorname{frac}\{D \backslash\right.$ Delta $t\}\left\{\backslash\right.$ Delta $\left.\left.x^{\wedge} 2\right\} \backslash\right)$
Hence the matrix equation $\backslash(\mathrm{Ax}=\mathrm{B} \backslash)$ must be solved where $\backslash(\mathrm{A} \backslash)$ is a tridiagonal matrix. Here we can use SciPy's solve_banded function to solve the above equation and advance one time step for all the points on the spatial grid.

Solving for the diffusion of a Gaussian we can compare to the analytic solution, the heat kernel:
$\$ \$ \mathrm{Q}(\mathrm{x}, \mathrm{t}) \backslash \operatorname{propto} \backslash \operatorname{frac}\{1\}\left\{\backslash \operatorname{sqrt}\left\{2 \backslash \mathrm{pi}\left(\backslash \operatorname{sigma} _0^{\wedge} 2+2 \mathrm{Dt}\right)\right\}\right\} \backslash \operatorname{lexp} \backslash \operatorname{left}\left(-\backslash \operatorname{frac}\left\{\left(\mathrm{x}-\mathrm{x} _0\right)^{\wedge} 2\right\}\left\{2\left(\backslash \operatorname{sigma} 0^{\wedge} 2+2 \mathrm{Dt}\right)\right\} \backslash\right.$ right $)$ \$\$

In the below video, the red outline shows the analytic solution and the black solid line shows the Crank-Nicolson result

Variable Coefficient

If $\backslash(D \backslash)$ is a function of position then $\backslash(s \backslash)$ needs to be evaulated at the spatial point. The form of this finite difference can be seen in finite difference methods page under introductory documentation.

Argument list

CN_diffusion_equation(T_0, D, x_list, dx, N_t, s = 0.25, wall_T = [0.0,0.0, 0.0, 0.0])

This function performs the Crank-Nicolson scheme for 1D and 2D problems to solve the inital value problem for the heat equation.

Parameters:

T_0: numpy array

In 1 D , an N element numpy array containing the intial values of T at the spatial grid points. In 2 D , a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing=' ij ' keyword arg.
D: function
In 1D, must take a numpy array argument containing spatial coords and return a numpy array of equal length giving the value of the diffusivity at the given positions e.g.

```
def D(x):
    return 0.5+0.5*x
```

In 2D, must take a pair of floats of the x and y coords and return a float of the diffusivity at that point e.g.

```
def D(x,y):
    return 0.5+0.5*(x-0.5)**2+0.5*(y-0.5)**2
```

x_list: numpy array / list of numpy array
In 1D, an N element numpy array of equally spaced points in space (creating using numpy linspace or arange is advised) at which the wave will be evaluated. In 2D, a list containing two numpy arrays of length N and M respectively. These correspond to the x and y spatial grids. e.g.

```
dx = 0.01
x = dx*np.arange(201)
y = dx*np.arange(101)
T,t = pde.CN_diffusion_equation(T_0, D, [x,y], dx, N_t)
```

dx: float
Must give the spacing between points in the x array (and y array for 2D)
$N _t$: integer
Number of time steps taken
s: float
This is used to set the time step via $\backslash\left(\backslash\right.$ Delta $t=s \backslash$ Delta $\left.x^{\wedge} 2 \backslash\right)$. Although the scheme is stable for any size $\backslash(\backslash$ Delta $t \backslash)$ in order to ensure accurate results s should set sufficiently low. Generally of order $\backslash\left(1 / D_{-}\{\max \} \backslash\right)$ is advisable.
wall_T: list of floats
A list of 2 or 4 floats (for 1D or 2D) containing the fixed T values for the boundaries.

Returns:

A N x N_t numpy array, $\mathrm{N} x \mathrm{Mx}_{\mathrm{N}} \mathrm{f}$ t in 2D, which contains the approximated T at different times. A N_t element numpy array is also returned containing the time interval over which the simulation was run.

Time-Dependent Schrödinger equation via the Split-Step Fourier method

Writing the Schrödinger equation in the form (in units where $\backslash(\backslash h b a r=1 \backslash): \$ \$ \backslash \operatorname{frac}\{\backslash$ partial $\backslash p s i\}\{\backslash$ partial $t\}=\mathrm{i}$ \mathcal\{L\} \psi+i \mathcal\{N\} \psi \$\$

Where for the TDSE: $\$ \$ \backslash \operatorname{mathcal}\{\mathrm{~L}\}=\backslash \operatorname{frac}\{1\}\{2 \mathrm{~m}\} \backslash$ frac $\{\backslash$ partial $\wedge 2\}\left\{\backslash\right.$ partial $\left.x^{\wedge} 2\right\}, \backslash$ mathcal $\{N\}=-V(x) \$ \$$
The time evolution operator is then given by:
$\$ \$ \backslash p s i\left(x, t _0+t\right)=\backslash \exp (i(\backslash m a t h c a l\{L\}+\backslash \operatorname{mathcal}\{N\}) t) \backslash p s i\left(x, t _0\right) \$ \$$
We can split the exponential if $\backslash([\backslash \operatorname{mathcal}\{\mathrm{L}\}, \backslash \operatorname{mathcal}\{\mathrm{N}\}]=0 \backslash)$. This is not necessarily true but for a small time interval, $\backslash(\backslash$ Delta $t \backslash)$, commutativity can be assumed with an error of order $\backslash\left(\backslash\right.$ Delta $\left.t^{\wedge} 2 \backslash\right)$.

By first neglecting $\backslash(\backslash$ mathcal $\{\mathrm{L}\} \backslash)$ in time interval $\backslash\left(\left[t _0, t _0+\backslash\right.\right.$ Delta $\left.\left.t / 2\right] \backslash\right)$ we are left with an ODE with a solution of the form:
$\$ \$ \ p s i\left(x, t _0+\backslash\right.$ Delta $\left.t / 2\right)=\backslash \exp (i \backslash D e l t a t \backslash m a t h c a l\{N\} / 2) \backslash p s i\left(x, t _0\right) \$ \$$
Now neglecting $\backslash(\backslash$ mathcal $\{N\} \backslash)$, moving to momentum space $\backslash(\backslash m a t h c a l\{L\} \backslash)$ is simply multiplication. Hence in the full time interval $\backslash(\backslash$ Delta t$)$:
$\$ \$ \backslash$ tilde $\{\backslash$ psi $\}\left(k, t _0+\backslash\right.$ Delta $\left.t\right)=\operatorname{lexp}(i \backslash \operatorname{Delta} t \backslash \operatorname{mathcal}\{F\}(\backslash m a t h c a l\{L\})) \backslash$ tilde $\{\backslash p s i\}\left(k, t _0\right)=\backslash \exp (-i \backslash D e l t a t$ k^2 / 2 m) \tilde\{ $\operatorname{psi}\}\left(k, t _0\right) \$ \$$

For the initial
(\tilde\{ \psi \}(k,t_0)
) we use the Fourier transform of the time half step result we found first. Finally we must perform an additional spatial domain time half step to recover the split step approximation to time evolution operator for $\backslash(\backslash$ mathcal $\{\mathrm{L}\}+\backslash$ mathcal $\{\mathrm{N}\} \backslash)$ by $\backslash(\backslash$ Delta $\mathrm{t} \backslash)$.

In full, the process is the following:
$\$ \$ \backslash p s i\left(x, t _0+\backslash\right.$ Delta $\left.t\right)=\backslash \exp (i \backslash D e l t a t \backslash m a t h c a l\{N\} / 2) \backslash m a t h c a l\{F\} \wedge\{-1\}(\operatorname{lexp}$ (i \backslash Delta $t \backslash m a t h c a l\{F\}(\backslash m a t h-~$ $\operatorname{cal}\{\mathrm{L}\})$) \backslash mathcal $\{\mathrm{F}\}\left(\operatorname{lexp}(\mathrm{i} \backslash\right.$ Delta $\mathrm{t} \backslash$ mathcal $\left.\left.\{\mathrm{N}\} / 2) \backslash \mathrm{psi}\left(\mathrm{x}, \mathrm{t} _0\right)\right)\right)$ \$\$

We will be using Fast Fourier Transforms (FFTs) from the SciPy library so need to take into consideration the discrete nature of our input.

The basic argument behind this is to match the continuous Fourier transform pair $\backslash(\backslash \mathrm{psi}(\mathrm{x}, \mathrm{t})$ leftrightarrow \backslash tilde $\{$ $\backslash \mathrm{psi}\}(\mathrm{k}, \mathrm{t}) \backslash)$ to a discrete approximation, $\backslash\left(\left\langle\mathrm{psi}\left(\mathrm{x} _\mathrm{n}, \mathrm{t}\right)\right.\right.$ \leftrightarrow \backslash tilde $\left.\{\backslash \mathrm{psi}\}\left(\mathrm{k} _\mathrm{m}, \mathrm{t}\right) \backslash\right)$. Here we use n and m to index x and k :

Starting with a continuous Fourier transform, we can form the discrete approximation:

Comparing these to the discrete Fourier transform definitions we find the discrete Fourier transform pair:

Where $\backslash(\backslash$ Delta $\mathrm{k}=2 \backslash$ pi $/(\mathrm{N} \backslash$ Delta x$) \backslash)$
Note that just as we have limited the range of x above, we have here limited the range of k as well. This means that high-frequency components of the signal will be lost in our approximation. The Nyquist sampling theorem tells us that this is an unavoidable consequence of choosing discrete steps in space.

It should be noted that the wavefunctions reaching the boundaries should be avoided. The spatial domain should be large enough and the inital wavefunction should be of a suitable form e.g. Gaussian wavepackets

Gaussian wavepackets

A Gaussian wavepackets can be used to investigate the quantum mechanical evolution of particles as they are well localized in both real and momentum space (i.e. they are minimum uncertainty states). However a Gaussian wavepacket
will spread over time so a smart choice of a initial wavefunction will help the wavepacket last long enough to observe long times. The width of the probability density increases with time as follows:
For a initial wavepacket of the form:
$\$ \$ \ p s i\left(x, t=t _0\right) \backslash p r o p t o ~ \ e x p ~ \ l e f t\left(-\backslash f r a c\left\{\left(x-x _0\right)^{\wedge} 2\right\}\left\{4 \backslash s i g m a _0^{\wedge} 2\right\}+i k _0 x \backslash\right.$ right $) \$ \$$
$\$ \$ \backslash \operatorname{sigma}^{\wedge} 2(t)=\backslash \operatorname{sigma}{ }^{\wedge} 2 _0+\backslash f r a c\{1\}\left\{\backslash \operatorname{sigma}{ }^{\wedge} 2 _0\right\} \backslash \operatorname{frac}\left\{t^{\wedge} 2\right\}\left\{4 \mathrm{~m}^{\wedge} 2\right\} \$ \$$
Hence the width of the packet is minimized at the end of the simulation when
$\$ \$ \backslash$ frac $\{\mathrm{d} \backslash$ sigma $\}\{\backslash$ sigma_0 $\}=0 \backslash$ to \backslash sigma^2_0 $=\backslash \operatorname{frac}\{\mathrm{t}\}\{2 \mathrm{~m}\} \$ \$$
Below is an example of setting up such a wavepacket:

```
def oneD_gaussian(x,mean,std,k0):
    return np.exp(-((x-mean)**2)/(4*std**2)+ 1j*x*k0)/(2*np.pi*std**2)**0. 25
dt = 0.01
N_t = 2000
p0 = 2.0
d = np.sqrt(N_t*dt/2.)
psi_0 = oneD_gaussian(x,x.max()-10*d,d,-p0)
```

As an example of its use, here is a gaussian wavepacket incident on a potential barrier:

Non-Linear Schrödinger

The non-linear Schrödinger equation includes a term which depends on the probability density of the wavefunction. This can be included by modifying our $\backslash(\backslash$ mathcal $\{\mathrm{N}\} \backslash)$ operator:
$\$ \$ \backslash$ mathcal $\{\mathrm{N}\}=-\mathrm{V}(\mathrm{x})+$ kappa \backslash left $\mid \mathrm{psi}(\mathrm{x}, \mathrm{t}) \backslash$ right ${ }^{\wedge} \wedge^{2} \$ \$$
Depending on the sign, this corresponds to a repulsive or attractive contact potential between particles described by the wavefunction.

Argument list

split_step_schrodinger(psi_0, dx, dt, V, N_t, x_0 $=0 ., \mathrm{k}_{-} 0=$ None, $\mathrm{m}=1.0$, non_linear $=$ False $)$
This function performs the split-step Fourier method to solve the 1D time-dependent Schrödinger equation for a given potential

Parameters:

psi_0: numpy array
In 1D, an N element numpy array containing the intial values of $\backslash(\backslash p s i \backslash)$ at the spatial grid points. In 2D, a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing=' ij ' keyword arg.
dx: float
Must give the spacing between points in the x array
$d t$: float

Gives the time step taken within the split-step algorithm. This needs to be small to reduce the size of numerical errors (try 0.01 as a safe starting value)

V: function

Pass a function which takes a numpy array argument containing spatial coords and returns the potential at that point e.g.

```
def V(x):
    V_x = np.zeros_like(x)
    a = 0.5
    x_mid = (x.max()+x.min())/2.
    V_x = -a**2*(1/np.cosh(a*(x-x_mid)))**2
    return V_x
```

If non_linear $=$ True then the potential function must now take an additional argument which is equal to the spatial wavefunction at the current time step e.g.

```
def V(x,psi):
    V_x = np.zeros_like(x)
    V_x = -200.*np.absolute(psi)**2+0.05*x**2
    return V_x
```

$N _t$: integer
Number of time steps taken
x_0: float
Give the starting position of the spatial grid
k_0: float
Gives the starting position of the momentum space grid. If none is given then $k _0$ is set to $\backslash(-\backslash p i / \backslash D e l t a x$) as it can be shown that this exactly satisfies the Nyquist limit.
m: float
The mass of the particle (default value of 1.0)
non_linear: boolean
Set to True if investigating the non-linear Schrödinger equation. Default is False

Returns:

Two N x N_t numpy arrays which contain the approximated real space and momentum space wavefunctions at different times. A N element numpy array is also returned containing the k space interval used.
The list below summarises the functions, their input arguments and their outputs for quick reference for the informed user:

2.3.4 Functions

```
LW_wave_equation(psi_0, x_list, dx, N_t, c, a = 1., bound_cond = 'periodic',init_grad = None, init_vel
= None)
```

This function performs the two-step Lax-Wendroff scheme for 1D problems and a Lax method for 2D problems to solve a flux-conservative form of the wave equation for variable wave speed, c.

Parameters:

psi_0: numpy array

In 1D, an N element numpy array containing the intial values of $\backslash(\backslash p s i \backslash)$ at the spatial grid points. In 2D, a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing=' ij ' keyword arg.
x_list: numpy array / list of numpy array
In 1 D , an N element numpy array of equally spaced points in space (creating using numpy linspace or arange is advised) at which the wave will be evaluated. In 2D, a list containing two numpy arrays of length N and M respectively. These correspond to the x and y spatial grids. e.g.

```
dx = 0.01
x = dx*np.arange(201)
y = dx*np.arange(101)
psi_2d,t = pde.LW_wave_equation(psi_0_2d, [x,y],dx,N,c_2d)
```

dx: float
Must give the spacing between points in the x array (and y array for 2 D)
$N _t$: integer
Number of time steps taken
c : function
In 1 D , must take a numpy array argument containing spatial coords and return a numpy array of equal length giving the value of the wave speed at the given positions e.g.

```
def c(x):
    return 0.5+0.5*x
```

In 2D, must take a pair of numpy arrays containing the x and y coords and return a numpy meshgrid of the wave speeds at those points e.g.

```
def c(x,y):
    XX,YY = np.meshgrid(x,y,indexing='ij')
    return 0.5+0.5*YY
```

This gives a wavespeed that's only a function of y
a: float
The Courant number, for stability of the code this must be $\backslash($ leq $1 \backslash$) (look up Courant-Friedrichs-Lewy stability criterion for information on this). For lower a, the code is more stable but the time step is reduced so more time steps (N) are required to simulate the same time length
bound_cond: string
Can be equal to 'fixed', 'reflective' and 'periodic' to impose those boundary conditions. For fixed, the wave must go to zero at the boundary. For reflective, the gradient parallel to the surface normal must vanish at the boundary. For periodic, the boundaries on opposite sides are set to be equal.
init_grad: function
A function which takes psi_0 as an argument and returns the gradient of the initial wave on the spatial grid. 1D example for a travelling Gaussian given below along with the init_vel example. For 2D, both $\(\backslash$ partial $\backslash p s i / \backslash$ partial $x \backslash)$ and $\backslash(\backslash p a r t i a l ~ \backslash p s i / \backslash p a r t i a l y ~$ ~ m u s t ~ b e ~ r e t u r n e d ~ i n d i v i d u a l l y . ~ F o r ~ a ~ 2 D ~ i n i t i a l l y ~\) Gaussian wave:


```
def twoD_gaussian(XX,YY,mean,std) :
    return np.exp (-((XX-mean[0])**2+(YY-mean[1])**2)/(2*std**2))
def gradient_2d(x,y,mean,std):
    XX,YY = np.meshgrid(x,y, indexing='ij')
    def D(psi_0):
        dfdx = - (XX-mean[0])*twoD_gaussian(XX,YY,mean,std)/std**2
        dfdy = - (YY-mean[1])*twoD_gaussian(XX,YY,mean,std)/std**2
        return dfdx,dfdy
    return gradient_2d
```

Here the init_grad argument would be set to gradient_2d(x,y,mean,std) so that the LW_wave_equation program recieves the function D. This removes the need for $L W$ _wave_equation to know the values of mean and std.

If the default argument, None, is given then the initial gradient is estimated within the program using finite differencing. It is preferable to give the program a init_grad function when there exists an analytic form.
init_vel: function
 initial wave on the spatial grid. 1D example for a travelling Gaussian given below.

If the default argument, None, is given then the initial velocity is set to zero at all points.
Having defined the variables; $\mathrm{x}, \mathrm{dx}, \mathrm{N} _\mathrm{t}$, mean and std:

```
def oneD_gaussian(x,mean,std):
    return np.exp (- ((x-mean)**2)/(2*std**2))
def gradient_1d(x,mean,std):
    def D(psi_0):
        return - (x-mean)*oneD_gaussian(x,mean, std)/std**2
    return D
def velocity_1d(x,mean,std):
    def V(psi_0):
        return -c(x)*(x-mean)*oneD_gaussian(x,mean, std)/std**2
    return V
psi_1d,t = pde.LW_wave_equation(oneD_gaussian(x,mean,std),x,dx,N_t,c,
    init_vel = velocity_1d(x,mean,std), init_grad = gradient_ld(x,mean,std),
    bound_cond = 'reflective')
```


Returns:

A N x N_t numpy array, $\mathrm{N} \times \mathrm{Mx}$ N_t in 2D, which contains the approximated wave at different times. A N_t element numpy array is also returned containing the time interval over which the simulation was run.
$C N _$diffusion_equation(T_0, D, x_{-}list, $d x, N _$list, $s=0.25$, wall_T $\left.=[0.0,0.0,0.0,0.0]\right)$
This function performs the Crank-Nicolson scheme for 1D and 2D problems to solve the inital value problem for the heat equation.

Parameters:

T_0: numpy array

In 1D, an N element numpy array containing the intial values of T at the spatial grid points. In 2 D , a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs
to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing=' ij ' keyword arg.

D: function

In 1 D , must take a numpy array argument containing spatial coords and return a numpy array of equal length giving the value of the diffusivity at the given positions e.g.

```
def D(x):
    return 0.5+0.5*x
```

In 2D, must take a pair of floats of the x and y coords and return a float of the diffusivity at that point e.g.

```
def D(x,y):
    return 0.5+0.5*(x-0.5)**2+0.5*(y-0.5)**2
```

x_list: numpy array / list of numpy array
In 1D, an N element numpy array of equally spaced points in space (creating using numpy linspace or arange is advised) at which the wave will be evaluated. In 2 D , a list containing two numpy arrays of length N and M respectively. These correspond to the x and y spatial grids. e.g.

```
dx = 0.01
x = dx*np.arange(201)
y = dx*np.arange(101)
T,t = pde.CN_diffusion_equation(T_0, D, [x,y], dx, N_t)
```

dx: float
Must give the spacing between points in the x array (and y array for 2D)
$N_{-} t$: integer
Number of time steps taken
s: float
This is used to set the time step via $\backslash\left(\backslash\right.$ Delta $t=s \backslash$ Delta $\left.x^{\wedge} 2 \backslash\right)$. Although the scheme is stable for any size $\backslash(\backslash$ Delta $t \backslash)$ in order to ensure accurate results s should set sufficiently low. Generally of order $\backslash\left(1 / D_{-}\{\max \} \backslash\right)$ is advisable.
wall_T: list of floats
A list of 2 or 4 floats (for 1D or 2D) containing the fixed T values for the boundaries.

Returns:

A N x N_t numpy array, $\mathrm{N} x \mathrm{Mx} \mathrm{N} _\mathrm{t}$ in 2D, which contains the approximated T at different times. A N_t element numpy array is also returned containing the time interval over which the simulation was run.
split_step_schrodinger(psi_0, dx, dt, V, N, x_0 = 0., k_0 = None, $m=1.0$, non_linear $=$ False)
This function performs the split-step Fourier method to solve the 1D time-dependent Schrödinger equation for a given potential

Parameters:

psi_0: numpy array

In 1 D , an N element numpy array containing the intial values of $\backslash(\backslash p s i \backslash)$ at the spatial grid points. In 2 D , a NxM array is needed where N is the number of x grid points, M the number of y grid points. This array needs to be in "matrix indexing" rather than "Cartesian indexing" i.e. the first index (the rows) correspond
to x values and the second index (the columns) correspond to y values. If using numpy.meshgrid, matrix indexing can be ensured by using the indexing=' ij ' keyword arg.
$d x$: float
Must give the spacing between points in the x array
$d t$: float
Gives the time step taken within the split-step algorithm. This needs to be small to reduce the size of numerical errors (try 0.01 as a safe starting value)

V: function

Pass a function which takes a numpy array argument containing spatial coords and returns the potential at that point e.g.

```
def V(x):
    V_x = np.zeros_like(x)
    a = 0.5
    x_mid = (x.max() +x.min())/2.
    V_x = -a**2*(1/np.cosh (a*(x-x_mid))) **2
    return V_x
```

If non_linear $=$ True then the potential function must now take an additional argument which is equal to the spatial wavefunction at the current time step e.g.

```
def V(x,psi):
    V_x = np.zeros_like(x)
    V_x = -200.*np.absolute(psi)**2+0.05*x**2
    return V_x
```

$N_{-} t$: integer
Number of time steps taken
$x _0$: float
Give the starting position of the spatial grid
k_0: float
Gives the starting position of the momentum space grid. If none is given then $k _0$ is set to $\backslash(-\backslash p i / \ D e l t a x$ $$\) as it can be shown that this exactly satisfies the Nyquist limit.
m: float
The mass of the particle (default value of 1.0)

non_linear: boolean

Set to True if investigating the non-linear Schrödinger equation. Default is False

Returns:

Two N x N_t numpy arrays which contain the approximated real space and momentum space wavefunctions at different times. A N element numpy array is also returned containing the k space interval used.

2.4 Optics

2.4.1 Introduction to the Optics module

This module contains functions for use in geometric optics problems. The example usage is for caustics, such those observed at the bottom of a swimming pool. As we are working in the geometric optics limit, this simply requires manipulation of vectors. Refraction is a rotation about a axis perpendicular to the surface normal and incoming wave vector by an angle determined by Snell's law.

You can find the source code for this module on the GitHub.

2.4.2 In-depth Documentation

Ray Object

The optics module uses an object orientated approach based around the Ray object. A ray is defined by its direction and its behaviour is determined by the environment it is propagating through. Hence the ray object has attributes about itself, such as its position of incidence and its wave vector, and about the surrounding media, such as the refractive indices and media interfaces functional form.

To perform refraction on a ray we must know the surface normal and the angle of incidence. Using Snell's law we can find $\backslash(\backslash$ theta_2 2) and hence the rotation required to rotate the incident ray onto the refracted ray (shown in the diagram below by the hashed red arrow rotating onto the refracted black ray).

The rotation axis is the normalised cross product of the incident wave vector and the surface normal. The angle of rotation is $\backslash(\backslash$ theta_ $\{12\}=\backslash$ theta_1 - \backslash theta_2 $\backslash)$. Hence the full transformation required is the following:
\$\$ R_\{tot $\}=R_{-}\{z \backslash$ to $r\} \wedge\{-1\} R_{-}\{\backslash$ theta_\{12 $\left.\}\right\} R_{-}\{z \backslash$ to $r\} \$ \$$
$\backslash\left(R_{-}\{\backslash\right.$ theta_\{12\}\}
) performs a rotation by $\backslash(\backslash$ theta_\{12\}
) about the z axis this has the form:
$\$ \$ R_{-}\left\{\backslash t h e t a _\{12\}\right\}=\backslash \operatorname{begin}\{$ bmatrix $\} \backslash \cos \left(\backslash\right.$ theta_\{12\}) \& $\backslash \sin \left(\backslash t h e t a _\{12\}\right) \& 0 \backslash-\backslash \sin \left(\backslash t h e t a _\{12\}\right) \& \backslash \cos$ (\theta_\{12\}) \& $0 \backslash \backslash 0$ \& $0 \& 1$ lend\{bmatrix $\} \$ \$$
$\backslash\left(\mathrm{R} _\{\mathrm{z} \backslash \text { to } \mathrm{r}\} \backslash\right)$ rotates the z axis onto the rotation axis, r . To form this transform let us consider rotating a unit vector $\backslash(\mathrm{a} \backslash)$ onto another $\backslash(\mathrm{b} \backslash)$. The axis of rotation is along $\backslash(\mathrm{x}=\mathrm{a} \backslash$ times $\mathrm{b} \backslash)$. Using Rodrigues' rotation formula in its matrix form to rotate $\backslash(\mathrm{a} \backslash)$ about $\backslash(\mathrm{x} \backslash)$ by an angle $\backslash(\backslash$ theta $)$:
\$\$ $\backslash \operatorname{mathbf}\{\mathrm{b}\}=\backslash \operatorname{left}\left(\mathrm{I}+\backslash \sin (\backslash t h e t a) \mathrm{X}+(1-\backslash \cos (\backslash t h e t a)) \mathrm{X}^{\wedge} 2 \backslash\right.$ right $) \backslash m a t h b f\{\mathrm{a}\} \$ \$$
Where $\backslash(X \backslash)$ is the cross-product matrix for $\backslash(x \backslash)$ defined by
$\$ \$ \mathrm{X}=\backslash \mathrm{frac}\{1\}\{\backslash \operatorname{left|} \mathrm{x} \backslash$ right| $\} \backslash$ begin $\{$ bmatrix $\} 0 \&-x _3 \& x _2 \backslash x _3 \& 0 \&-x _1 \backslash-x _2 \& x _1 \& 0$ lend $\{$ bmatrix $\}$ \$\$

Also $\backslash($ leftl $\mathrm{x} \backslash$ rightl $=\backslash \sin (\backslash$ theta $) \backslash)$ and $\backslash(\mathrm{a} \backslash c d o t \mathrm{~b}=\backslash \cos (\backslash$ theta $) \backslash)$
Hence replacing $\backslash(\mathrm{a} \backslash)$ by a unit vector pointing along z and $\backslash(\mathrm{b} \backslash)$ by the normalised cross product of the unit surface normal and the unit incident wave vector, we obtain the required rotation matrix.

With total rotation matrix formed we can calculate the position of the refracted rays at the base of the refracting medium. This is simply done by enlarging the length of the vector until the z component is equal to the distance to the bottom, $\backslash(\mathrm{h}+\mathrm{f}(\mathrm{x}, \mathrm{y}) \backslash)$. The refracted ray position can then be read off from the x and y components of the vector (plus the rays initial position).

Ray Object

$\operatorname{Ray}\left(x, y, f, d f d x, d f d y, h, n _a r r\right)$ (__init__function)

Parameters:

x, y : numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
$f, d f d x, d f d y:$ functions
f : A function of x, y and t which gives the displacement of the second mediums surface
dfdx: A function of x, y and t which gives the partial differential of f along x
dfdy: A function of x, y and t which gives the partial differential of f along y
These are used to compute the unit normal and the height the ray must descend to reach the bottom of the second medium

n_arr: list of floats
A list of two floats, the first being the refractive index of the first medium and the second that of the second medium
h: height
The height of the second medium, the incident light rays which refract will be traced until they reach this height
findnormal(self,t)
Finds the normalised normal vector at position of the incident ray
Parameters:
t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed
snellsangle(self)
Calculates the angle of refraction via Snell's law

```
transformation_matrix(self)
```

Calculates the rotation matrix required to rotate the incident ray onto the refracted ray

```
refract(self,t)
```

Computes the refracted ray positions using the rotation matrix

Parameters:

t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed

Caustics and Dispersion

Caustics

A caustic is the envelope of light rays reflected or refracted by a curved surface or object, or the projection of that envelope of rays on another surface. An example of this is the light seen at the bottom of a swimming pool. If the second media has a larger refractive index then raised regions will focus the light as the entering light is bent towards the surface normal.

Using the method described in the Ray Object page, caustics can be simulated for a simple two media system.
An example of its use can be found here.
The functions described below allow for easy use of the Ray Object to produce caustic images. The steps behind this method are as follows:

1. A regular grid of normal incident rays are set up at the interface
2. The rays are refracted based on the surface normal at incident point
3. The rays are traced to the bottom of the medium, the viewing screen is placed at a depth h below the interface
4. The screen is split into boxes and the number of rays in each box is counted i.e. a 2 D histogram
5. The image is then created or the steps 1-4 are run for different times to create a dynamic caustic simulation In terms of Optics module functions:
ray_grid \rightarrow rays_refract \rightarrow single_time_image/evolve $(\rightarrow$ ray_count $) \rightarrow$ caustic_image/caustic_anim

Dispersion

Dispersion can also be investigated. This is simply done by giving different refractive indices to different collections of Ray objects. The same method described for forming the caustic map can then be used to track the paths of the different wavelengths. Then by choosing appropriate colourmaps, different wavelengths in the incident light can seen to have seperated in the resulting image.

An example of programming this can be found in this notebook.

Argument list

ray_grid(N_x,N_y,n_arr,h,f,dfdx,dfdy,x_lims = [0.,1.], y_lims = [0.,1.])

Parameters:

N_x: integer
The number of grid points along the x axis
$N_{-} y$: integer
The number of grid points along the y axis
n_arr: list of floats
A list of two floats, the first being the refractive index of the first medium and the second that of the second medium
h: height
The height of the second medium, the incident light rays which refract will be traced until they reach this height
$f, d f d x, d f d y:$ functions
f : A function of x, y and t which gives the displacement of the second mediums surface
dfdx: A function of x, y and t which gives the partial differential of f along x
dfdy: A function of x, y and t which gives the partial differential of f along y
These are used to compute the unit normal and the height the ray must descend to reach the bottom of the second medium

x_lims: list of floats
A list of floats which contain the range of x values over which the grid is defined
y_lims: list of floats
A list of floats which contain the range of y values over which the grid is defined
Returns:
The coordinate grids x and y and a list of $\mathrm{N}_{-} \mathrm{x}$ x $\mathrm{N}_{-} \mathrm{y}$ Ray objects defined on the grid incident on a surface with the given functional form and given refractive index
rays_refract(rays,t)

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
t : numpy array
A numpy array with the time coordinates for which a refracted image will be calculated

Returns:

Returns the x and y coordinates of the rays after refraction and having travelled a vertical distance $h+f$
ray_count(rays_x,rays_y,boxsize_x,boxsize_y)
Parameters:
rays_x,rays_y: numpy arrays
Arrays containing the x and y coordinates of the refracted arrays, these are produced by the rays_refract function
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Two regular coordinate meshgrids, XX and YY, and the number of rays in each bin i.e. the 2D histogram data, I.

```
single_time_image(rays,boxsize_x,boxsize_y)
```

This function calls ray_refract followed by ray_count. These are evaluated at $\mathrm{t}=0$ so is useful for surface functions f, dfdx, dfdy which are time independent

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Two numpy arrays and three numpy meshgrids. The numpy arrays contain the x and y coordinates of the refracted rays, these can be used to visualise the refracted ray locations simply by creating a scatter plot of x against y. The numpy meshgrids give the coordinate meshgrids and 2D histogram data needed to plot an intensity map
evolve(rays,t,boxsize_x,boxsize_y)
This function calls ray_refract followed by ray_count for each time step within the array t.

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
t : numpy array
A numpy array with the time coordinates for which a refracted image will be calculated
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Three lists, the first two are lists of coordinate meshgrids for the different time evaluations. The third list is a list of 2 D histogram data points for the different time evaluations. Hence all the data needed to plot the time evolution of the caustic image is created by this function
caustic_image($x, y, N, X X, Y Y, I I, h, f$, disturbance_height,plot_height,c_map = 'Blues_r')
Creates a 3D plot displaying a scaled media interface and the refracted ray intensity image
Parameters:
x, y : numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
N : list of integers
A list containing $\mathrm{N} _\mathrm{x}$ and $\mathrm{N} _\mathrm{y}$ used to create the ray grid before refraction
XX,YY: numpy meshgrids
Coordinate meshgrids for the refracted ray positions i.e. those created by ray_count
II: numpy meshgrid
Meshgrid containing the number of refracted rays within bins on the above coordinate meshgrid h: float

The height of the second medium
f : function
The surface displacement of the second medium

disturbance_height: float

The maximum value of the function f for all x, y and t
plot_height: float
The factor by which the surface plot is scaled when displayed in the plot (value of 0.25 works well)
c_map: colormap
Colormap used to plot the refracted ray intensity map

Returns:

Creates a 3D plot displaying a scaled media interface and the refracted ray intensity image
caustic_anim(x,y,t,N,XX_t,YY_t,II_t,h,f,disturbance_height,plot_height,c_map='Blues_r',interval $=100$, fname $=$ None)

Creates an animated 3D plot displaying a scaled media interface and the refracted ray intensity image
Parameters:
x,y: numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed
N : list of integers
A list containing $\mathrm{N} _\mathrm{x}$ and $\mathrm{N} _y$ used to create the ray grid before refraction
$X X _t, Y Y _t$: lists of numpy meshgrids

Lists of coordinate meshgrids for the different time evaluations, these can be produced by the evolve function

II_t: list of numpy meshgrids
List of meshgrids containing the number of refracted rays within bins on the above coordinate meshgrids for different time evaluations, this can be produced by the evolve function
h: float
The height of the second medium

f: function

The surface displacement of the second medium

```
disturbance_height: float
```

The maximum value of the function f for all x, y and t
plot_height: float
The factor by which the surface plot is scaled when displayed in the plot (value of 0.25 works well)
c_map: colormap
Colormap used to plot the refracted ray intensity map
interval: integer
The number of milliseconds between frames in the animation
fname: string
Name of file to which the animation will be save. If left as default None argument then a temporary file will be used instead

Returns:

Creates a 3D animated plot displaying a scaled media interface and the refracted ray intensity image
The list below summarises the functions, their input arguments and their outputs for quick reference for the informed user:

2.4.3 Functions

ray_grid(N_x,N_y,n_arr,h,f,dfdx,dfdy,x_lims = [0.,1.], y_lims = [0.,1.])

Parameters:

N_x: integer
The number of grid points along the x axis
N_y: integer
The number of grid points along the y axis

n_arr: list of floats

A list of two floats, the first being the refractive index of the first medium and the second that of the second medium
h: height

The height of the second medium, the incident light rays which refract will be traced until they reach this height

$f, d f d x, d f d y:$ functions

f : A function of x, y and t which gives the displacement of the second mediums surface
dfdx: A function of x, y and t which gives the partial differential of f along x
dfdy: A function of x, y and t which gives the partial differential of f along y
These are used to compute the unit normal and the height the ray must descend to reach the bottom of the second medium

x_lims: list of floats
A list of floats which contain the range of x values over which the grid is defined
y_lims: list of floats
A list of floats which contain the range of y values over which the grid is defined

Returns:

The coordinate grids x and y and a list of $N_{-} x$ x N_y Ray objects defined on the grid incident on a surface with the given functional form and given refractive index

rays_refract(rays,t)

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
t : numpy array
A numpy array with the time coordinates for which a refracted image will be calculated

Returns:

Returns the x and y coordinates of the rays after refraction and having travelled a vertical distance $h+f$
ray_count(rays_x,rays_y,boxsize_x,boxsize_y)

Parameters:

rays_x,rays_y: numpy arrays
Arrays containing the x and y coordinates of the refracted arrays, these are produced by the rays_refract function
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Two regular coordinate meshgrids, XX and YY , and the number of rays in each bin i.e. the 2 D histogram data, I.

```
single_time_image(rays,boxsize_x,boxsize_y)
```

This function calls ray_refract followed by ray_count. These are evaluated at $t=0$ so is useful for surface functions f, dfdx, dfdy which are time independent

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Two numpy arrays and three numpy meshgrids. The numpy arrays contain the x and y coordinates of the refracted rays, these can be used to visualise the refracted ray locations simply by creating a scatter plot of x against y. The numpy meshgrids give the coordinate meshgrids and 2D histogram data needed to plot an intensity map

```
evolve(rays,t,boxsize_x,boxsize_y)
```

This function calls ray_refract followed by ray_count for each time step within the array t.

Parameters:

rays: list of Ray objects
A list of Ray objects either defined via ray_grid or one made individually
t : numpy array
A numpy array with the time coordinates for which a refracted image will be calculated
boxsize_x,boxsize_y: floats
Floats which define the size of histogram bins used to evaulate a light intensity from the refracted image

Returns:

Three lists, the first two are lists of coordinate meshgrids for the different time evaluations. The third list is a list of 2D histogram data points for the different time evaluations. Hence all the data needed to plot the time evolution of the caustic image is created by this function

```
caustic_image( \(\mathbf{x , y , N , X X , Y Y , I I , h , f , d i s t u r b a n c e \_ h e i g h t , p l o t \_ h e i g h t , c \_ m a p ~ = ~ ' B l u e s \_ r ' ) ~}\)
```

Creates a 3D plot displaying a scaled media interface and the refracted ray intensity image
Parameters:
x, y : numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
N : list of integers
A list containing $\mathrm{N} _\mathrm{x}$ and $\mathrm{N} _\mathrm{y}$ used to create the ray grid before refraction
XX,YY: numpy meshgrids
Coordinate meshgrids for the refracted ray positions i.e. those created by ray_count
II: numpy meshgrid
Meshgrid containing the number of refracted rays within bins on the above coordinate meshgrid
h: float
The height of the second medium
f : function
The surface displacement of the second medium
disturbance_height: float
The maximum value of the function f for all x, y and t
plot_height: float
The factor by which the surface plot is scaled when displayed in the plot (value of 0.25 works well)
c_map: colormap
Colormap used to plot the refracted ray intensity map

Returns:

Creates a 3D plot displaying a scaled media interface and the refracted ray intensity image
caustic_anim(x,y,t,N,XX_t,YY_t,II_t,h,f,disturbance_height,plot_height,c_map='Blues_r',interval = 100,fname $=$ None)

Creates an animated 3D plot displaying a scaled media interface and the refracted ray intensity image

Parameters:

x, y : numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed
N : list of integers
A list containing $\mathrm{N} _\mathrm{x}$ and $\mathrm{N} _\mathrm{y}$ used to create the ray grid before refraction
$X X _t, Y Y _t$: lists of numpy meshgrids

Lists of coordinate meshgrids for the different time evaluations, these can be produced by the evolve function

II_t: list of numpy meshgrids
List of meshgrids containing the number of refracted rays within bins on the above coordinate meshgrids for different time evaluations, this can be produced by the evolve function
h: float
The height of the second medium

f: function

The surface displacement of the second medium

```
disturbance_height: float
```

The maximum value of the function f for all x, y and t

```
plot_height: float
```

The factor by which the surface plot is scaled when displayed in the plot (value of 0.25 works well)
c_map: colormap
Colormap used to plot the refracted ray intensity map
interval: integer
The number of milliseconds between frames in the animation
fname: string
Name of file to which the animation will be save. If left as default None argument then a temporary file will be used instead

Returns:

Creates a 3D animated plot displaying a scaled media interface and the refracted ray intensity image

2.4.4 Ray Object

$\operatorname{Ray}\left(x, y, f, d f d x, d f d y, h, n _a r r\right)$ (__init__function)

Parameters:

x, y : numpy arrays
Numpy arrays containg the x and y coordinates of the rays before refraction
$f, d f d x, d f d y:$ functions
f : A function of x, y and t which gives the displacement of the second mediums surface
dfdx: A function of x, y and t which gives the partial differential of f along x
dfdy: A function of x, y and t which gives the partial differential of f along y
These are used to compute the unit normal and the height the ray must descend to reach the bottom of the second medium

n_arr: list of floats
A list of two floats, the first being the refractive index of the first medium and the second that of the second medium
h: height
The height of the second medium, the incident light rays which refract will be traced until they reach this height

findnormal(self,t)

Finds the normalised normal vector at position of the incident ray

Parameters:

t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed
snellsangle(self)
Calculates the angle of refraction via Snell's law
transformation_matrix(self)
Calculates the rotation matrix required to rotate the incident ray onto the refracted ray
refract(self,t)
Computes the refracted ray positions using the rotation matrix

Parameters:

t : numpy array
A numpy array with the time coordinates for which a refracted image will be displayed

2.5 Display

2.5.1 Introduction to the Display module

This module contains functions for use in creating and displaying HTML embedded videos in Jupyter notebooks. Matplotlib animation objects are converted either directly to HTML5 or via a permanent file in the directory containing the notebook.

A notebook demonstrating its use can be found here (or in nbviewer).
You can find the source code for this module on the GitHub.

CHAPTER 3

About PyCav

3.1 History

There's not much to write here yet, we're just getting started!

3.2 License

PyCav source code is licensed under the terms of the clear BSD License:

```
Copyright (c) 2016, PyCav team 2016
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted (subject to the limitations in the disclaimer
below) provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
    list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
    this list of conditions and the following disclaimer in the documentation
    and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its contributors may be
    to endorse or promote products derived from this software without specific
    prior written permission.
NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS
LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
```

